
Author's Accepted Manuscript

Ultra-long Cycle Life, Low-Cost Room Temperature Sodium-Sulfur Batteries Enabled by Highly Doped (N,S) Nanoporous Carbons

Zhe Qiang, Yu-Ming Chen, Yanfeng Xia, Wenfeng Liang, Yu Zhu, Bryan D. Vogt

www.elsevier.com/locate/nanoenergy

PII: S2211-2855(16)30582-1

DOI: http://dx.doi.org/10.1016/j.nanoen.2016.12.018

Reference: NANOEN1669

To appear in: Nano Energy

Received date: 21 September 2016 Revised date: 8 December 2016 Accepted date: 10 December 2016

Cite this article as: Zhe Qiang, Yu-Ming Chen, Yanfeng Xia, Wenfeng Liang, Yi Zhu and Bryan D. Vogt, Ultra-long Cycle Life, Low-Cost Room Temperature Sodium-Sulfur Batteries Enabled by Highly Doped (N,S) Nanoporous Carbons *Nano Energy*, http://dx.doi.org/10.1016/j.nanoen.2016.12.018

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Ultra-long Cycle Life, Low-Cost Room Temperature Sodium-Sulfur Batteries Enabled by Highly Doped (N,S) Nanoporous Carbons

Zhe Qiang $^{\ddagger a}$, Yu-Ming Chen $^{\ddagger b}$, Yanfeng Xia a , Wenfeng Liang b , Yu Zhu $^{*, b}$ and Bryan D. Vogt $^{*, a}$

^aDepartment of Polymer Engineering, The University of Akron, 250 S Forge St, Akron, OH, 44325, United States

^bDepartment of Polymer Science, Goodyear Polymer Center, The University of Akron, 170 University Circle, Akron, OH, 44325, United States

KEYWORDS. Na/S battery; Battery lifetime; Cycle life; carbonate-polysulfide reaction

ABSTRACT. Efficiency, cost, and lifetime are the primary challenges for stationary energy storage with vanadium-redox flow and sodium-sulfur batteries as promising options. In particular, room temperature sodium-sulfur battery systems offer the potential for safe, simple, low-cost and high energy density storage, but the high reactivity or solubility of sodium polysulfides in common liquid electrolytes for carbonates or glycols, respectively, leads to rapid performance loss on cycling. Herein, we demonstrate a robust route to mostly inhibit reactivity of the sulfides with carbonate electrolytes (and also inhibit the diffusion of polysulfides

Download English Version:

https://daneshyari.com/en/article/5452093

Download Persian Version:

https://daneshyari.com/article/5452093

<u>Daneshyari.com</u>