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Abstract: In this study, the authors develop an ℋ∞ stabilisation condition for polynomial sampled-data control systems with
respect to an external disturbance. Generally, continuous-time and sampled state variables are mixed in polynomial sampled-
data control systems, which is the main drawback to numerically solving the stabilisation conditions of these control systems. To
overcome this drawback, this study proposes novel stabilisation conditions that address the mixed-states problem by casting the
mixed states as a time-varying uncertainty. The stabilisation conditions are derived from a newly proposed polynomial time-
dependent Lyapunov–Krasovskii functional and are represented as a sum-of-squares, which can be solved using existing
numerical solvers. Some additional slack variables are further introduced to relax the conservativeness of the authors' proposed
approach. Finally, some simulation examples are provided to demonstrate the effectiveness of their approach.

1 Introduction
Recently, sum-of-squares (SOS)-based stability analysis and
controller synthesis have received significant attention from
researchers in the field of control engineering for treating non-
linear systems represented in polynomial vector fields [1–8]. The
dynamic behaviour of many practical non-linear systems can be
expressed by a polynomial system model; examples include
aircraft systems [9], unmanned aerial vehicles [10], Moore–
Greitzer model of a jet engine [11], and chaotic systems [12]. In
addition, SOS-based approaches provide a systematic framework
for investigating the stability of non-linear control systems, and
stability conditions can be determined numerically by using SOS
solvers such as SOSTOOLS [13, 14]. While a number of studies
have dealt with polynomial control systems, very few studies have
addressed sampled-data control of polynomial systems. Herein, a
control system is defined as a sampled-data control system in
which the analogue system is controlled by a digital controller [15].
Although some research works addressed polynomial control
systems in the discrete-time domain [7, 8], these works cannot be
directly extended to the sampled-data control problem. The reason
for this is that this approach requires a discretised model of a
continuous-time polynomial model; however, it is not easy to
discretise a continuous-time polynomial model prior to
investigating its stability. Moreover, to the best of our knowledge,
no systematic and exact method has yet been proposed for
discretising continuous-time polynomial control systems in a
polytopic structure [16].

The sampled-data control problem for both linear and non-
linear systems alike falls into two categories: (i) the direct
discretisation method [16–19] and (ii) the input-delay approach
[20–24]. In the direct discretisation method, the stability of a
sampled-data control system is directly analysed in the discrete-
time domain based on the discretised model specified in advance.
The exact discrete-time polytopic models exist for linear-time-
invariant systems; however, this is not the case for polynomial
systems. Therefore, a previous study [16] attempted to discretise
given continuous-time systems by ignoring higher-order terms and
compensating for truncated errors. Due to the stability is
investigated in the discrete-time domain, this method discards a
large number of existing continuous-time control theories, making
the approach less attractive to researchers.

On the other hand, the input-delay approach transforms a given
sampled-data control problem into an equivalent input-delay
control problem, and it has been successfully adopted for dealing
with sampled-data control systems. This approach appears to be an
appropriate solution to the sampled-data control of polynomial
systems; however, studies thus far have been unable to account for
the problem of mixed states in which the stability condition
includes a combination of continuous-time and sampled state
variables, which makes the condition non-convex. Furthermore, in
previous studies, stability conditions were derived using a simple
Lyapunov–Krasovskii functional (LKF) that employs constant
Lyapunov matrices, thereby yielding conservative stability
conditions.

In view of the above-described motivations, this paper develops
an SOS-based input-delay approach to the stabilisation of sampled-
data polynomial control systems. The proposed approach
effectively accounts for the problem of mixed states by casting the
difference among these continuous and discrete time states as a
time-varying uncertainty. Moreover, the stabilisation condition is
further extended to cover the ℋ∞ control design criterion, making
the control system robust with respect to an external disturbance.
The stability conditions are derived from a newly proposed
polynomial time-dependent LKF in which polynomial Lyapunov
matrices are employed and formulated in terms of SOSs. Together
with the polynomial Lyapunov matrices, additional slack variables
further relax the condition. Finally, simulation examples are
provided to demonstrate the effectiveness of the proposed
approach.

The following are the main contributions of this paper:

i. The mixed states included in the stability condition are
effectively manipulated in a novel way.

ii. A novel polynomial time-dependent LKF and some slack
variables are introduced to relax the stability condition.

iii. Both asymptotic stabilisation and ℋ∞ control design are
considered for polynomial systems.

Notations: Vectors v(t), v(tk), and v(τ) are expressed as vt, vk,
and vτ, respectively. The kth element of a vector vt is denoted by vt

k.
For a polynomial matrix M(xt), Mk(xt) denotes its kth row vector.
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For a matrix X, expressions such as He{X} = X + XT are employed
to simplify the equations.

2 Problem formulation
In this paper, we deal with a control system whose dynamic
equation can be modelled as the following polynomial model:

ẋt = A(xt)xt + Bu(xt)ut + Bw(xt)wt

yt = C(xt)xt,
(1)

on a compact set ℬx × ℬu := {xt:∥ xt ∥ ≤ Δx} × {ut:∥ ut ∥ ≤ Δu},
where xt ∈ ℝn is a state vector, ut ∈ ℝm is an input vector,
wt ∈ ℒ2

l[0, ∞) is an external disturbance, yt ∈ ℝp is an output
vector, A(xt) ∈ ℝn × n, Bu(xt) ∈ ℝn × m, Bw(xt) ∈ ℝn × l, and
C(xt) ∈ ℝp × n are polynomial matrices of state variables, and Δx
and Δu are positive scalars.

In this paper, we employ the following polynomial sampled-
data controller:

ut = uk = K(xk)xk, for t ∈ tk, tk + 1 , (2)

where K(xk) ∈ ℝm × n is a polynomial control gain matrix to be
determined, and tk with k ∈ ℤ > 0 denotes the kth sampling time.
Thus, the control signal holds a constant value uk for t ∈ [tk, tk + 1) in
which uk denotes a control signal at t = tk.

By substituting the polynomial sampled-data controller (2) into
the polynomial system (1), we obtain the following closed-loop
system representation:

ẋt = A(xt)xt + Bu(xt)K(xk)xk + Bw(xt)wt

= A(xt)xt + Bu(xt)K(xk)(xk − xt + xt) + Bw(xt)wt

= A(xt) + Bu(xt)K(xk) xt − (t − tk)Bu(xt)K(xk)x̄t + Bw(xt)wt

= ϕ(xt, xk)xt − (t − tk)ϕ̄(xt, xk)x̄t + Bw(xt)wt,

(3)

where ϕ(xt, xk) = A(xt) + Bu(xt)K(xk), ϕ̄(xt, xk) = Bu(xt)K(xk), and

x̄t = 1
t − tk

∫
tk

t
ẋτ dτ = 1

t − tk
xt − xk . (4)

The following lemmas are required to derive the proposed
stabilisation condition.

 
Lemma 1 [16]: Given the matrices U, V, and Γ = ΓT of

appropriate dimensions, the following statements are equivalent:

i. Γ + He{UΔV} ≺ 0, ∀Δ ∈ {M: MTM ≤ σ2I} .
ii. There exists a real number κ > 0 such that

Γ + κ−1VTV + κσ2UUT < 0 holds.
iii. There exists κ ∈ ℝ such that the following condition holds:

Γ + κσ2UUT ∗
V −κI

≺ 0.

In this paper, all stability conditions are derived on the basis of
the Lyapunov stability theory [25] and are represented in the form
of SOSs, allowing us to solve the conditions numerically. The
following lemma describes the relationship between the positivity
of a polynomial matrix and an SOS condition.

 
Lemma 2 [14]: Any symmetric polynomial matrix

M(xt) = MT(xt) is positive definite if the following SOS condition
is satisfied:

vT M(xt) − ϵ(xt)I v is SOS, (5)

where ϵ(xt) > 0 for xt ≠ 0 is a predefined scalar polynomial
function of xt, and v is an arbitrary vector of an appropriate
dimension that is independent of xt.

In this paper, motivated by the work in [21], we propose the
following polynomial time-dependent LKF for deriving the
stabilisation condition of (3):

V(t) = V1(t) + V2(t), t ∈ [tk, tk + 1), (6)

where

V1(t) = xt
TP(x~t)xt,

V2(t) = tk + 1 − t ∫
tk

t
ẋτ

TR(x~t)ẋτ dτ,

0 ≺ P(x~t) = PT(x~t) ∈ ℝn × n, 0 ≺ R(x~t) = RT(x~t) ∈ ℝn × n,

x~t := xt
k1 xt

k2 … xt
kq

T ∈ ℝq, and 𝒦 := {k1, k2, …, kq} denotes
the set of the row indices of both Bu(xt) and Bw(xt) whose
corresponding rows are zero. For example, if

Bu(xt) =
1
0
0

and Bw(xt) =
1 + xt

1

0
0

,

i.e. if the second and third rows are simultaneously zero, then we
set

𝒦 = {2, 3} and x~t =
xt

2

xt
3 .

 
Remark 1: As P(x~t) and R(x~t) are positive definite polynomial

matrices, V1(t) and V2(t) are also positive definite functions.
Clearly, V1(t) is continuous in time and differentiable for all
t ∈ [0, ∞) and V2(t) is continuous on t ∈ [0, ∞) because
limt → tk

V2(t) = V2(tk) = 0. Moreover, V2(t) is differentiable for
t ∈ (0, ∞) except for all t = tk with k ∈ ℝ > 0.

The purpose of this paper is to derive a sufficient condition for
guaranteeing the stability of the closed-loop polynomial system (1)
closed with the non-linear sampled-data polynomial controller (2)
under wt = 0. Moreover, we also deal with the ℋ∞ control problem
so as to demonstrate the applicability of the proposed approach.

3 Asymptotic stabilisation of sampled-data
polynomial control systems
In this section, the sampled-data stabilisation condition for the
closed-loop polynomial system (3) is provided under wt = 0. The
following lemma introduces slack variables by which the condition
is relaxed.
 
Lemma 3: The following inequality is satisfied:

∫
tk

t
ẋτ

T (tk + 1 − t)Ṙ(x~t) − R(x~t) ẋτ dτ ≤ (t − tk)x̄t
T L(x~t) + 2H x̄t,

for t ∈ [tk, tk + 1)
(7)

If there exist positive definite matrices 0 ≺ R(x~t) = RT(x~t) and
0 ≺ L(x~t) = LT(x~t), and symmetric matrix H = HT of appropriate
dimensions such that the following matrix inequalities hold:

R(x~t) − TṘ(x~t) ≻ 0, (8)
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