
Author's Accepted Manuscript

BaTiO₃ nanocrystal-mediated micro pseudoelectrochemical cells with ultrasound-driven piezotronic enhancement for polymerization

Lili Zhao, Yan Zhang, Fulei Wang, Shicong Hu, Xiaoning Wang, Baojin Ma, Hong Liu, Zhong Lin Wang, Yuanhua Sang

www.elsevier.com/locate/nanoenergy

PII: S2211-2855(17)30449-4

DOI: http://dx.doi.org/10.1016/j.nanoen.2017.07.037

Reference: NANOEN2095

To appear in: Nano Energy

Received date: 7 May 2017 Revised date: 15 July 2017 Accepted date: 21 July 2017

Cite this article as: Lili Zhao, Yan Zhang, Fulei Wang, Shicong Hu, Xiaoning Wang, Baojin Ma, Hong Liu, Zhong Lin Wang and Yuanhua Sang, BaTiO nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-drive piezotronic enhancement for polymerization, *Nano Energy* http://dx.doi.org/10.1016/j.nanoen.2017.07.037

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

$BaTiO_3$ nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization

Lili Zhao^{a1}, Yan Zhang^{b,c1}, Fulei Wang^a, Shicong Hu^c, Xiaoning Wang^a, Baojin Ma^a, Hong Liu^{a,d*},

Zhong Lin Wang^{b,*}, Yuanhua Sang^{a,*}

^aState Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China

^bBeijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing, 100083, P. R. China

^cSchool of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China

^dInstitute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, P. R. China

hongliu@sdu.edu.cn zlwang@binn.cas.cn sangyh@sdu.edu.cn

*Corresponding authors.

Abstract

Conventional electrochemical polymerization is performed on electrodes driven by a direct current power source. It is impossible to realize an electrochemical polymerization reaction on the surfaces of individual nanocrystals in an aqueous system due to the difficulty of connecting all of the nanocrystals to a power source with wires or with the aid of microfabrication, especially in the environment of liquid. In this work, a micro pseudo-electrochemical polymerization reaction was proposed for *in situ* synthesis of

¹ These authors contributed equally.

Download English Version:

https://daneshyari.com/en/article/5452383

Download Persian Version:

https://daneshyari.com/article/5452383

<u>Daneshyari.com</u>