
Author's Accepted Manuscript

Solar water splitting on porous-alumina-assisted ${\rm TiO_2}$ -doped ${\rm WO_x}$ nanorod photoanodes: paradoxes and challenges

Maria Bendova, Francesc Gispert-Guirado, Achim Walter Hassel, Eduard Llobet, Alexander Mozalev

www.elsevier.com/locate/nanoenergy

PII: S2211-2855(17)30036-8

DOI: http://dx.doi.org/10.1016/j.nanoen.2017.01.029

Reference: NANOEN1743

To appear in: Nano Energy

Received date: 25 November 2016 Revised date: 5 January 2017 Accepted date: 11 January 2017

Cite this article as: Maria Bendova, Francesc Gispert-Guirado, Achim Walter Hassel, Eduard Llobet and Alexander Mozalev, Solar water splitting on porous alumina-assisted TiO₂-doped WO_x nanorod photoanodes: paradoxes and challenges, *Nano Energy*, http://dx.doi.org/10.1016/j.nanoen.2017.01.029

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Solar water splitting on porous-alumina-assisted TiO_2 -doped WO_x nanorod photoanodes: paradoxes and challenges

Maria Bendova^{a,b}, Francesc Gispert-Guirado^c, Achim Walter Hassel^b, Eduard Llobet^d, Alexander Mozalev^{a*}

NSC/110

^aCEITEC – Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic

^bChristian Doppler Laboratory for Combinatorial Oxide Chemistry at the Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria ^cSRCiT, University Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Spain

d-----

^dMINOS-EMaS, University Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Spain

maria.bendova@ceitec.vutbr.cz francesc.gispert@urv.cat achimwalter.hassel@jku.at eduard.llobet@urv.cat alexander.mozalev@ceitec.vutbr.cz

*Corresponding author. Tel.: +420 54114 9849

Abstract

Arrays of self-organized WO₃-based semiconductor nanorods are prepared from a thin W layer, W/Ti bilayer (tungsten-on-titanium), and W-10at.%Ti alloy layer via the porous-anodic-alumina (PAA)-assisted anodization at various conditions to address the radius/length ratio of ~13/130 and ~70/700 nm (respectively 'small' and 'big' nanorods). Doping the WO₃ nanorods with TiO₂ was achieved, for the first time, simply by anodizing the W/Ti and W-10at.%Ti layers through the alumina nanopores. The post-anodizing treatments combined PAA dissolution with annealing in air and vacuum at 500–550 °C to alter the film composition, crystal structure, and electrical properties. The air-annealed big nanorods comprising monoclinic and triclinic WO₃ crystal phases reveal their superior performance in photoelectrochemical (PEC) water splitting, showing a low onset potential (0.5 V_{RHF}) and a competitive value of photocurrent (15.5 mA·cm⁻²) in 0.1 mol·dm⁻³ Na₂SO₄ solution (pH 5.0) under chopped illumination at a single wavelength of 405 nm, 1 W·cm⁻², with no sign of photocorrosion. Paradoxically, the presence of monoclinic WO_{2.9} phase in the vacuum-annealed nanorods worsens the PEC behavior and stimulates the peroxo-assisted dissolution. Unexpectedly, electrochemically doping both the WO₃ and WO_{2.9} big nanorods with TiO₂ causes the photocurrent to decrease dramatically. An advanced approach developed for modeling charge transport processes in the PAA-assisted WO_x nanorods predicts a 7-fold further rise in the solar current should the big nanorods grow longer (1.5 μm) and wider (300 nm) to absorb a bigger portion of light and support a thicker depletion layer, without, however, getting fully depleted, which is the case of the small nanorods.

Keywords: anodizing, porous anodic alumina, tungsten oxide, titanium oxide, nanorods, photoelectrochemical water splitting

Download English Version:

https://daneshyari.com/en/article/5452495

Download Persian Version:

https://daneshyari.com/article/5452495

<u>Daneshyari.com</u>