Contents lists available at ScienceDirect

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry

journal homepage: www.elsevier.com/locate/calphad

Phase diagram of the quaternary system LiCl+MgCl₂+KCl+H₂O at 323.15 K

Haitang Yang^{a,b}, Tengyu Liang^c, Dewen Zeng^{c,*}, Jianling Yue^{a,*}, Yong Du^d

^a Hunan Key Laboratory of Advanced Fibers and Composites, Central South University, 410083 Changsha, PR China

^b School of Metallurgical and Materials Engineering, Hunan University of Technology, 412007 Zhuzhou, PR China

^c College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, PR China

^d State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha, PR China

A R T I C L E I N F O

Keywords: LiCl MgCl₂ KCl Phase diagram

ABSTRAT

Solubility isotherms as well as the corresponding solid phases of the quaternary system LiCl+MgCl₂+KCl+H₂O and the eutectic points for the ternary systems LiCl+MgCl₂+H₂O, LiCl+KCl+H₂O and MgCl₂+KCl+H₂O at 323.15 K have been elaborately determined by an isothermal equilibrium method. Five crystallization fields including two double salts (LiCl-MgCl₂·TH₂O(s) and KCl·MgCl₂·6H₂O(s)), two hydrate salts (MgCl₂·6H₂O(s) and LiCl-H₂O(s)) and one single salt (KCl(s)) were detected in the quaternary system. The reliability of the experimental results were verified both by testing the phase diagram rule and comparing with the literature data. It was found that all of the results were accordance with the phase diagram rule, and moreover, the excellent agreement between the experimental data and the literature data was also obtained, which indicate that the solubility data obtained in this work are reliable. Based on the quaternary phase diagram, the essential tool to guide industrial application. The measured phase diagram reported in this work are the essential tool to guide industrial process of extracting Li from the salt lake brine containing MgCl₂ and LiCl using KCl reagent.

1. Introduction

After multi-step evaporation of the Qaidam salt-lake brine (mainly containing the ions K^+ , Na^+ , Li^+ , Mg^{2+} , Cl^- , SO_4^{2-} , CO_3^{2-} , $B_4O_7^{2-}$, and H₂O) by solar ponds technology, the brine can be roughly treated as the system LiCl + MgCl₂ + H₂O [1]. For this system, the mass ratio of Mg:Li is approximately 20-60. Nevertheless, the method for economically separating the Mg and Li with such a high Mg:Li ratio is a challenge for all chemical engineers [2]. Among all the separating methods, Voigt [3] suggested an economical and practical method, by which the reagent KCl was proposed to add into the salt brine to crystallize out MgCl₂ as double salt MgCl₂·KCl·6H₂O (s). The obvious solubility difference between MgCl₂·KCl·6H₂O(s) and LiCl·H₂O(s) ensures the practicability of this method. Meanwhile, the abundant KCl(s) product in the process of evaporating the salt lake brine guarantees the economy of this method. However, to apply this method to guide the practical production, information on the phase diagram of the quaternary system LiCl+MgCl₂+KCl+H₂O and its sub-ternary systems from 273.15 to 323.15 K are urgent required.

To date, the phase diagrams of the ternary systems $MgCl_2+LiCl +H_2O$ [4–6], $LiCl+KCl+H_2O$ [7,8] and $KCl+MgCl_2+H_2O$ [9–13] have been widely reported from 298.15 to 373.15 K. The stable phase diagram for the quaternary system at 298.15 K has been reported by

Zhang [14]. Meanwhile, the metastable phase diagram for this quaternary system at 323.15 K has also been determined by Yu [15], but the crystallization zones are quite different with the results reported by Zhang [14]. For a solar pond technique in summer, however, the stable solubility isotherms of this quaternary system at 323.15 K are even more important but have been unknown so far.

In order to obtain the accurate phase diagram of the quaternary system LiCl+MgCl₂+KCl+H₂O at *T*=323.15 K, we elaborately determined the stable phase diagram by the isothermal equilibrium method in this work. To verify the reliability of the experimental data in this work, we also determined the eutectic points of the ternary systems MgCl₂+LiCl+H₂O, LiCl+KCl+H₂O and KCl+MgCl₂+H₂O at 323.15 K and compared with the literature data.

2. Experimental section

2.1. Materials

LiCl was prepared by neutralizing Li₂CO₃ with HCl and then purified by twice crystallization. MgCl₂ and KCl were directly recrystallized four times from water. Doubly distilled water ($S \le 1.2 \times 10^{-4}$ S/m), silver nitrate (wt% > 0.999), EDTA (wt% > 0.999) and KB(C₆H₅)₄ (wt% > 0.999) were also used in the experiment. The main impurity

* Corresponding authors. E-mail addresses: dewen_zeng@hotmail.com (D. Zeng), jlyue2010@csu.edu.cn (J. Yue).

http://dx.doi.org/10.1016/j.calphad.2017.04.001

Received 20 December 2016; Received in revised form 31 March 2017; Accepted 3 April 2017 0364-5916/ © 2017 Elsevier Ltd. All rights reserved.

Table 1

Specifications of chemicals used in this work.

Chemical Name	Source	Initial Mass Fraction Purity	Purification Method	Final Mass Fraction Purity	Analysis Method
Potassium chloride (KCl)	Sinopharm Chemical Reagent Co.	> 0.999	recrystallized four times	0.9999	ICP
Magnesium chloride hexahydrate (MgCl ₂ ·6H ₂ O)	Sinopharm Chemical Reagent Co.	> 0.999	recrystallized four times	0.9999	ICP
Lithium chloride (LiCl·H ₂ O)	synthesized by ourselves		recrystallized two times	≥0.9999	ICP
Lithium chlorate	Shanghai China-Lithium	0.9995	none		ICP
Hydrochloric acid (HCl)	Sinopharm Chemical Reagent Co.	0.9998	none		ICP
Silver nitrate (AgNO ₃)	Sinopharm Chemical Reagent Co.	0.9998	none		ICP
Hydrogen nitrate (HNO ₃)	Sinopharm Chemical Reagent Co.	0.9998	none		ICP
Zinc oxide (ZnO)	Sinopharm Chemical Reagent Co.	0.9999	none		ICP
Disodium EDTA	Sinapharm Chemical	0.9998	none		ICP
Absolute ethylalcohol	Sinapharm Chemical	0.9998	none		ICP
(C_2H_5OH) Normal butylalcohol (C_4H_9OH)	Reagent Co. Sinapharm Chemical Reagent Co.	0.9998	none		ICP
Sodium tetraphenylboron (NaB(C_6H_5) ₄)	Sinapharm Chemical Reagent Co.	0.9998	none		ICP
Potassium tetraphenylborate (KB(C ₆ H ₅) ₄)	Sinapharm Chemical Reagent Co.	0.9998	none		ICP
Acetic acid glacial (C ₂ H ₅ COOH)	Sinapharm Chemical	0.9998	none		ICP
Water (H ₂ O)	Reagent CO.		distilled three times	$\sigma{\leq 1.1{\times}10^{-4}~S/m}$	TDS

elements Ca, Mg, Li, Na, K, Fe and Ba in the prepared reagents were analyzed by Inductively Coupled Plasma (ICP) emission spectrometry (US Perkin Elmer Corporation, Optima 5300DV), and the content of each element was determined to be less than 200 ppm. Table 1 gives the instructions of all the chemical reagents used in this work.

2.2. Experimental apparatus

A vertical section of the isotherm equilibrium apparatus used in this work is presented in Fig. 1a. The thermostat (Germany, LAUDA E219) consists of four parts, including a stainless steel tank (A), the digital heating controller (B), the heating coils (C) and a stirring pump (D), exhibiting the temperature stability ± 0.01 K. The temperature difference between the diagonal lying corners of the thermostat is less than 0.008 K. The temperature was determined using a calibrated glass thermometer with an accuracy of ± 0.005 K. A sealing plate (F) was used to separate the water vapor from the mixture of the bath (E). The plastic pads with holes (J) were used to make the temperature of the samples more uniform. A Sartorius (CPA225D) balance was used for weighing with an error of ± 0.1 mg.

2.3. Experimental procedures

As reported in the literature [1], solid-liquid equilibrium experiments were carried out in a ground 250 cm^3 glass equilibrium flask (G) which was immersed in the thermostat filled with a glycol-water mixture (E). The solution and solid in the flask were stirred with a magnetic stirrer (I) outside the thermostat. Each sample was placed and stirred in the thermostat for approximately 200 h, and then kept static for approximately 12 h. The sample of the saturated solution was then removed using a pipette, with the tip covered in glass cloth as a filter, and transferred to two weighed 30 cm³ quartz bottles (a, b, c). The wet solid was transferred using a glass scoop into a 25 cm³ sintered glass filtering crucible. The solid was analyzed by X-ray diffraction and the solution was analyzed according to the following procedures:

- The concentration of MgCl₂ in this system was determined by titrating the Mg²⁺ ions in bottle (a) with EDTA, as described in the literature [16,17].
- (2) The concentration of KCl in this system was determined by precipitating K⁺ ions in bottle (b) with NaB(C₆H₅)₄, as described in the literature [16,17] except for some slight differences: (i) the NaB(C₆H₅)₄ solution was prepared ahead of a night to analyze the solution; (ii) the mass of KB(C₆H₅)₄ precipitation was controlled between 0.2 g to 0.3 g; (iii) a drop of saturated HNO₃ solution and 2 mL 1% CH₃COOH solution were added before NaB(C₆H₅)₄ solution added into the system, which is benefit to get a coarse grained KB(C₆H₅)₄. Through the above improvements, the analysis error can be reduced from 0.5% to 0.2%.
- (3) The total concentration of MgCl₂, LiCl and KCl in the quaternary system was determined by precipitating Cl⁻ ions in bottle (c) with AgNO₃, as described in the literature [16,17]. The difference

Download English Version:

https://daneshyari.com/en/article/5452844

Download Persian Version:

https://daneshyari.com/article/5452844

Daneshyari.com