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A B S T R A C T

Several numerical strategies are presented that can be used to effectively and efficiently update the estimated
assemblage of stable phases in a Gibbs energy minimizer. Decisions must be made in selecting which phase
should be added to or withdrawn from the system, the order in which certain combinations should be
considered, testing procedures of the appropriateness of a candidate system for further consideration, etc. The
manner in which these methods are performed have a profound effect on the performance and reliability of such
calculations; without effective strategies, the solution may not converge. While these matters are somewhat
straightforward for relatively small systems, far greater challenges are experienced in large systems containing
many chemical elements. These matters will be discussed and effective solutions that have been integrated
into THERMOCHIMICA throughout the course of its development will be presented.

1. Introduction

Computational thermodynamic software have served countless
scientific and engineering investigations well, whereby conventional
applications typically include point calculations (e.g., a single tempera-
ture, pressure, and composition) and the construction of phase
diagrams. Contemporary applications are evolving towards more
sophisticated thermodynamic representations of complex systems with
many chemical elements (e.g., nuclear fuel [1]) and the integration of
those calculations into multi-physics codes (e.g., coupling thermo-
chemistry with nuclear physics, and heat and mass transfer to simulate
irradiated nuclear fuel behaviour [2,3]). Despite significant advances in
computer hardware and parallel computing methodologies, the numer-
ical methods that are employed must be made with adequate efficiency
to bare a reasonable computational cost.

Previous investigations have demonstrated great progress in the
development of numerical methods used in various aspects of a Gibbs
energy minimizer, such as initialization algorithms [4,5], the non-
linear solver [6–10], and numerical procedures to ensure that the
necessary [11] and sufficient [12–17] conditions for thermodynamic
equilibrium have been satisfied. However, to the best of the knowledge
of the author, only a small handful of articles in the open literature
have discussed numerical strategies for updating the estimated assem-
blage of stable phases, none of which have revealed any great detail for
implementation in a general computational framework. The reason for

this is likely that comprehensive numerical methods to handle com-
plicated problems are mainly needed for software that have broad
capabilities, virtually all of which fall within the commercial domain.
Clearly, commercial interests incentivize one to closely guard trade
secrets.

The issues pertaining to the manner that an estimated assemblage
of stable phases is updated are of great importance in general
equilibrium thermodynamic solvers because convergence may not be
assured without adequate numerical strategies to update the system.
Another concern is that the number of global iterations1 required to
achieve convergence may be unnecessarily high when using inadequate
numerical methods. As is often the case, the devil's in the details; the
impetus of this article is to lay bare those details and to offer some
strategies to solve them that have been conceived throughout the
development of THERMOCHIMICA [10]. A background to this numerical
problem is given in Section 2 and several effective strategies are
described on how the phase assemblage can be updated are given in
Section 3.

2. Background

2.1. Constraints

A phase may need to be withdrawn from, it may need to be added
to, or it may need to substitute another phase that is currently
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predicted to be stable in the system. First, the criterion for withdrawing
a phase is dictated by the numerical constraints imposed on the mass
conservation equations. Second, the criterion for adding a phase is
governed by the sufficient condition for equilibrium, which is derived
from the second law of thermodynamics. Finally, the criterion for
substituting a phase is made in part to adhere to Gibbs’ phase rule.
These three broad criterions will be described below.

The mass balance equation for each system component2 j is given
by
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where Nλ denotes the number of species in solution phase λ, and Λ and
Ω represent the total number of stable solution and stoichiometric
phases in the system, respectively. The mole fraction of species i in
solution phase λ is represented by xi λ( ), and nλ and nω represent the total
number of moles of solution phase λ and stoichiometric phase ω,
respectively. The stoichiometry coefficients of component j in species i
and stoichiometric phase ω are ai j, and aω j, (g-at·mol−1), accordingly.

Eq. (1) is subject to the following constraints:

x n n i λ ω> 0, > 0, > 0, ∀ ( , , )i λ λ ω( ) (2)

In addition to satisfying the mass balance equations, the integral
Gibbs energy of the system, G, must be at a global minimum at
thermodynamic equilibrium. An equivalent statement of a local mini-
ma given by dG=0 is represented by the following linear equality
[11,18].
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where μi is the chemical potential of i, Γj is the chemical potential of
system component j, and C is the number of system components. In the
Gibbs energy minimization approach, μi and Γj are separate variables.
Specifically, μi is computed based on the mole fractions of species
within the same phase (as appropriated by the specific model), whereas
Γj is an undetermined Lagrangian multiplier that is solved by the non-
linear solver, which subsequently provides incremental updates to μi.
Therefore, there is necessarily a residual associated with Eq. (3).

A common interpretation of Eq. (3) is that it represents a line (or
plane or hyperplane) that is tangent to the molar Gibbs energy surfaces
of phases that are predicted to be stable. One of the necessary
conditions for equilibrium requires that the chemical potentials of all
species in stable solution phases and stoichiometric phases lie on this
plane [11], while the sufficient condition requires that the molar Gibbs
energy surfaces of all metastable phases lie above this plane [17]. The
difference between the molar Gibbs energy of any metastable solution
phase and the corresponding value computed by the chemical poten-
tials of the system components is often referred to as the “driving force”
[19] or “tangent plane distance function” [14], which is defined for
solution phase λ as
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One can also compute this value for a stoichiometric phase, πω, which is
trivial to compute since the molar Gibbs energy of a stoichiometric phase,
gω, by definition has a unique composition. Furthermore, Eq. (4) equally
applies to phases represented by the Compound Energy Formalism (CEF)
with multiple sublattices. The mole fractions and chemical potentials
associated with the compound end members are used in Eq. (4), which
are related to the constituents on all sublattices.

At equilibrium, πλ and πω for all metastable phases must be positive
and non-zero.3 Therefore, the criterion for adding a phase is whether πλ
or πω is negative at any point in the iteration cycle, which adheres to the
sufficient condition for equilibrium:

π π> 0, > 0λ ω (5)

In addition to ensuring that the integral Gibbs energy of the system
is a minimum at equilibrium, the number of stable phases must abide
Gibbs’ phase rule, which requires that the number of thermodynamic
degrees of freedom, F, be non-negative. The current discussion
considers closed isothermal-isobaric systems exclusively. In this case,
F is defined as the difference between the number of system compo-
nents, C, and the total number of stable phases, Φ (i.e., Φ Λ Ω= + ),
where maintaining constant temperature and pressure removes two
degrees of freedom, as

F C Φ= − , (6)

which is subject to the following constraint:

F ≥ 0 (7)

Therefore, the criterion for whether a phase needs to substitute
another phase in the system is made – at least in part – to obey Gibbs’
phase rule. To summarize, the criterion for withdrawing a phase is
made with respect to Eq. (2), adding a phase is made with respect to
Eq. (5), and substituting a phase is made partially with respect to Eq.
(7). These criteria provide the foundation for specific methods for
updating the estimated assemblage of stable phases, which will be
discussed in Section 3. The following sub-section will describe aspects
of the optimization process pertinent to updating the active set of
constraints.

2.2. Optimization

Solving the system of non-linear equations represented by the
Hessian matrix, H, yields a direction vector, p, which provides direction
in which the system's independent variables change. Updating the
estimated assemblage of stable phases has a direct effect on the
construction of H, which therefore affects changes to the system
variables. The Hessian matrix that minimizes the Lagrangian function
of the integral Gibbs energy of the system has been derived by Eriksson
and Rosen [6] and is summarized below:
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The notation here is simplified with the variables
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where ni λ( ) is the number of moles of species i in solution phase λ. The
system of linear equations that is to be solved is therefore,

2 The term “system component” is used here to represent the most basic form of a
thermodynamic system and is distinguished from a “phase component”, which typically
represents a species in a solution phase. 3 Note that πλ and πω are equal to zero for stable phases.
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