Contents lists available at ScienceDirect

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry

journal homepage: www.elsevier.com/locate/calphad

Critical evaluation of thermodynamic properties of rare earth sesquioxides (RE = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y)

Yumin Zhang, In-Ho Jung*

Department of Mining and Materials Engineering, McGill University, Montréal, Québec, Canada H3A 0C5

ARTICLE INFO

Keywords:

Enthalpy

Entropy

Gibbs energy

Rare earth sesquioxides

Transition temperature

ABSTRACT

In order to develop the thermodynamic database containing rare earth sesquioxides (RE₂O₃), accurate thermodynamic descriptions of all stable and metastable RE₂O₃ phases are required. Rare earth sesquioxides have five polymorphs, which are (from low to high temperature) the cubic phase (C), the monoclinic phase (B), the hexagonal phase (A), the high temperature hexagonal phase (H), and the high temperature cubic phase (X). However, the thermodynamic data for the phases stable only at high temperatures and for metastable phases are not well investigated. In this study, all ΔH_{298K}^o , S_{298K}^o , C_P (or heat content) and phase transition temperature (T_{tr}) data available in the literature for each rare earth sequioxide were collected and critically evaluated based on the sample preparations, experimental procedures and characterization techniques. Relationships between ΔH_{298K}^o , S_{298K}^o , S_{298K}^o , S_{298K}^o , S_{298K}^o , S_{10}^c , $S_{$

1. Introduction

RE₂O₃ (rare earth sesquioxides) typically include the whole series of lanthanide sesquioxides from La2O3 to Lu2O3 and two rare earth like sesquioxides, Y2O3 and Sc2O3. The "sesquioxide" simply indicates the oxide which has two moles of cations and three moles of oxygen anions in each mole of oxide. RE₂O₃ have a wide range of applications because of their unique physical and chemical properties. One of the most important applications is to use RE₂O₃ as ZrO₂ stabilizers. ZrO₂ is commonly used as heat resistant material on gas engine turbines to protect Ni- based superalloy. The most widely used RE2O3 stabilized ZrO2 system is YSZ (yttrium stabilized zirconia), which was originally developed by NASA in the mid 1970s. Nowadays, a lot of efforts have been poured into researching of more advanced alternative RE2O3-stabilized-ZrO2 aiming lower thermal conductivity and better durability [1]. Several candidates are Gd₂O₃, Sm₂O₃ and Nd₂O₃ sesquioxides [1]. Rare earth metals and oxides are highly desired in battery, advanced ceramics and military industries. Although rare earth oxides have a wide range of strategic and critical applications, the thermodynamic properties and phase diagrams are still not well determined. For example, neither the Gibbs energies for all stable nor metastable RE2O3 are accurately established.

The purpose of this study is to obtain a set of consistent thermodynamic data for all stable and metastable RE_2O_3 (entire lanthanide sesquioxides from La_2O_3 to Lu_2O_3 and two rare earth like sesquioxides, Y_2O_3 and Sc_2O_3). There are five solid polymorphs and one liquid phase for each RE_2O_3 . In this study, the literature data were analyzed and categorized into three parts: (1) the phase transition temperatures, (2)

E-mail address: in-ho.jung@mcgill.ca (I.-H. Jung).

http://dx.doi.org/10.1016/j.calphad.2017.07.001

Several years ago, a comprehensive review of thermodynamic properties of RE_2O_3 was performed by Zinkevich [2], who studied standard enthalpy, entropy, C_p and phase stabilities. Some of the thermodynamic properties of metastable phases were also deduced from the calculated phase diagrams of binary $\text{RE}'_2\text{O}_3$ - $\text{RE}''_2\text{O}_3$ systems. Clear disagreements between some assessed results by Zinkevich and experimental data regarding transition temperatures of RE_2O_3 were found. Some of the transition enthalpy and temperature of metastable RE_2O_3 were not clearly reported in the work of Zinkevich. Furthermore, the experimental transition enthalpy of $A \rightarrow H$ transition adopted by Zinkevich was questionably large, which can induce significantly unreliable estimation of the Gibbs energy of A and H phases. Therefore, it is necessary to critically review all the thermodynamic properties of RE_2O_3 again to produce a more unequivocal and consistent thermodynamic data for the entire RE_2O_3 .

^{*} Corresponding author.

Received 28 April 2017; Received in revised form 30 June 2017; Accepted 1 July 2017 0364-5916/ © 2017 Elsevier Ltd. All rights reserved.

the standard enthalpies of formation, standard entropies and heat capacity functions, and (3) the enthalpies and entropies of transitions. In the first part, the thermal stability and phase transition of each RE₂O₃ was discussed. The best set of transition temperature values for stable and metastable RE₂O₃ phases were determined. In the second part, the ΔH_{298K}^{2} and S_{298K}^{2} of stable RE₂O₃ phases were assessed based on the numerous experimental data. In the third part, the enthalpy and entropy of stable and metastable phase transitions were assessed from direct experimental data and indirect phase diagram data.

2. Temperatures of polymorphic phase transitions

The stable crystal form of the RE₂O₃ at room temperature is varied with the atomic number of RE. Lanthanide oxides from La₂O₃ to Nd₂O₃, generally named as the light RE₂O₃, are stable in form of hexagonal structure (A phase); Sm₂O₃ to Gd₂O₃, named as the middle RE₂O₃, are stable in either monoclinic (B phase) or cubic structure (C phase); Tb₂O₃ to Lu₂O₃, named as the heavy RE₂O₃, are stable only in cubic form (C phase). The Pm₂O₃, which positions between the light and middle RE₂O₃, is stable in C phase. That is, three stable RE₂O₃ phases C, B and A exist at room temperature depending on the RE₂O₃. These phases stable at room temperature transform to high temperature hexagonal phase (H phase), and high temperature cubic phase (X phase) at about 2400 K. Foex and Traverse [3] reported that these two high temperature phases are not quenchable to room temperature.

Ideally, the polymorphic transition of RE₂O₃ occurs in the sequence of $C\rightarrow B\rightarrow A\rightarrow H\rightarrow X\rightarrow L$ from room temperature to high temperature. However, some transitions are inviable at atmospheric pressure especially when ionic radius of RE [4] becomes small (ionic radius of rare earth cation becomes smaller with increasing atomic number of RE). According to experimental data, phase transition of the light RE₂O₃ (RE = La to Nd) follows the sequence of $A\rightarrow H\rightarrow X\rightarrow L$. The middle RE₂O₃ (RE = Sm to Gd) and Pm₂O₃ obey the ideal transition sequence of $C\rightarrow B\rightarrow A\rightarrow H\rightarrow X\rightarrow L$; and RE₂O₃ from Tb₂O₃ to Dy₂O₃ generally obey the ideal transition without A phase, $C\rightarrow B\rightarrow H\rightarrow X\rightarrow L$; Ho₂O₃ and Y₂O₃ have the transition sequence without A or X phases, $C\rightarrow B\rightarrow H\rightarrow L$; RE₂O₃ from Er₂O₃ to Yb₂O₃ transform in the order of $C\rightarrow H\rightarrow L$; Lu₂O₃ and Sc₂O₃ maintain C structures until their meltings.

The importance of proper understanding of polymorphic transition urged many investigations starting from Goldschmidt et al. [5] in 1925. They presented the stable polymorphs of RE₂O₃ at room temperature. In 1961, Warshaw and Roy [6] studied the C \rightarrow B transition temperatures of selective RE₂O₃ (RE = La-Nd, Sm-Gd, Tb, and Dy) using classical quenching technique with XRD (X ray diffraction) phase analysis. The first comprehensive study for the phase transitions of the entire lanthanide RE2O3 series from room temperature to melting temperature was carried out by Foex and Traverse [3] using in situ thermal and XRD analysis. In their study, the T_{tr} (transition temperature) and T_{fus} (fusion temperature) were plotted depending on the atomic number of the RE to present the provisional phase transition diagram of RE₂O₃. A few years later, Tresvyatkii et al. [7] measured the Ttr of some RE2O3 (RE = La to Nd, Sm, Gd, Tb to Er, Yb and Y) using DTA (differential thermal analysis) and XRD methods. The reversibility of the phase transitions with increasing and decreasing temperature was demonstrated in their work. Coutures et al. [8] carried out selective binary phase diagram studies of the La₂O₃-RE₂O₃ systems (RE = Nd, Gd, Sm, Dy, Ho, Tm, Er, Yb, and Y) using TA (thermal analysis) and XRD methods. They produced the phase diagrams at high temperatures mainly involving H, X and liquid phases. The T_{tr} of pure RE₂O₃ could be extracted from these binary phase diagrams. The results of Coutures et al. [8] are in excellent agreement with their previous work by Foex and Traverse [3]. The most recent comprehensive study of Ttr of RE2O3, excluding Pm2O3 and Eu2O3, was performed by Shevthenko and Lopato [9] in 1985 using DTA method in controlled gaseous environment up to 2873 K and TA method in air using solar radiation heating up to 3273 K. All the results from these four most comprehensive investigations and some fragmental studies are discussed

Table 1

Summary of the $C \rightarrow B$ phase transition temperatures. ASS: assessment; DT: decrease temperature; DTA: differential thermal analysis; EST: estimation; IT: increase temperature; QM: quenching method; TA: thermal analysis; XRD: X-ray diffraction; UNK: unknown method.

Sesquioxides	Ionic radii, Å	T _{trans} , K	Techniques	References	
V O	0.802	2756	FST	This work	
1203 Sc-O-	0.392	5099	EST	This work	
1 a.O.	1.061	(-786)	FST	This work	
	1.001	(-369)	FST	This work	
Ce_2O_3 Pr-O-	1.034	(-309)	EST	This work	
Nd-O-	0.995	285	EST	This work	
Pm O	0.995	203	OM VPD	Chikalla 1072	[10]
1 m ₂ O ₃	0.982	457	EST ASS	Zinkovich	[2]
		437	E51, A55	2007	[4]
		973	ASS	This work	
Sm_2O_3	0.964	1173 - 1273	QM, XRD	Roth, 1960	[11]
		1153	QM, XRD	Warshaw, 1961	[6]
		676	EST, ASS	Zinkevich,	[2]
		1159	100	Z007	
En O	0.050	1222	ASS OM VPD	Curtic 1050	[19]
Eu_2O_3	0.930	1323	QM, AKD	Doth 1060	[13]
		1070	QM, ARD	Kouii, 1960	[11]
		13/3	QM, XKD	warsnaw,	[6]
		894.5	EST. ASS	1961 Zinkevich	[2]
			,	2007	
		1348	ASS	This work	
Gd_2O_3	0.938	1523	QM, XRD	Roth, 1960	[11]
		1508	QM, XRD	Warshaw,	[6]
		1561	UNIZ	1961 Kalitaah 1005	[16]
		1301	UNK EST ASS	Kontsch, 1995	[10]
		1425	E91, A99	2007	[2]
		1561	ASS	This work	
Tb_2O_3	0.923	2113	QM, XRD	Warshaw, 1961	[6]
		1829	XRD, IT	Foex, 1966	[3]
		1679	XRD, DT	Foex, 1966	[3]
		1823	EST, ASS	Zinkevich, 2007	[2]
		1823	ASS	This work	
Dv-O-	0.908	2223	ТА	Foev 1966	[3]
$Dy_{2}O_{3}$	0.900	2223	DTA	Trocuratkii	[7]
		2220	DIM	1971	L/ J
		2140	TA	Coutures, 1976	[8]
		2253	DTA	Shevthenko, 1985	[9]
		2263	EST, ASS	Zinkevich, 2007	[2]
		2238	ASS	This work	
Ho-O-	0.804	2456	TA	Foor 1966	[3]
110203	0.094	2450	DTA	Trocuratkii	[7]
		2405	DIM	1971	1/1
		2459	ТА	Contures 1976	[8]
		2463	DTA	Shevthenko	[9]
		2100	DIII	1985	121
		2458	EST, ASS	Zinkevich, 2007	[2]
		2460	ASS	This work	
$\mathrm{Er}_{2}\mathrm{O}_{3}$	0.881	2593	DTA	Tresvyatkii, 1971	[7]
		2593	EST, ASS	Zinkevich, 2007	[2]
		2600	ASS	This work	
Tm ₂ O ₃	0.869	2913	EST	This work	
Yb ₂ O ₂	0.858	3195	EST	This work	
- 0203 Lu ₂ O2	0.848	3315	EST	This work	
	5.5.0	5010			

below, and compared for each phase transition in the following Sections 2.2–2.6. The best and most reliable set of data were selected in this work and hypothetical transition temperatures for metastable phases were predicted. Some necessary comparisons between this work and the previous assessment from Zinkevich [2] were also made.

Download English Version:

https://daneshyari.com/en/article/5452866

Download Persian Version:

https://daneshyari.com/article/5452866

Daneshyari.com