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The effects of isotopic substitution on diamond's elastic-stiffness coefficients are studied theoretically by
analyzing the zero-point motion and anharmonicity associated with lattice vibrations. Coefficients c;1,
C12, C44, and bulk modulus B are reported as purely theoretical functions of x, where x denotes the atomic
fraction of 13C in 12C(113,X)Cx. Second-order and third-order force constants are computed at the ab initio
level and used as input to these expressions. As X increases, the predicted values of c¢yq, €12, €44, and B
undergo essentially linear increases: c11(x) = c11(0)(1 + 0.000049x), cq2(X) = c12(0)(1 + 0.00025%),
Ca4(X) = €44(0)(1 + 0.000021x) and B(x) = B(0)(1 + 0.000088x). Thus, compared to the values at x = 0,
the values of cq1, €12, €44, and B are predicted to change by only 0.0049%, 0.025%, 0.0021%, and 0.0088%,
respectively, at x = 1. Our calculations also resolve a large discrepancy between two reported
measurements of cq,, and provide a general method that can be used for arbitrary crystals having di-
amond's space group.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A material's elastic and anelastic properties enter quintessen-
tially into a material's equation of state, which encompasses an
enormous range of thermophysical properties. Diamond's elastic
constants assume special importance because they relate directly
to diamond's extreme properties: high hardness, high thermal
conductivity, high resistance to extension and shear, low thermal
expansivity. Less directly, elastic constants relate to diamond's
other physical properties: low friction, wide optical transparency,
low dielectric constant, and others. The recent discovery of super-
conductivity in boron-doped diamond [1] emphasizes further the
importance of elastic constants. Specifically, elastic constants
determine accurately the Debye temperature, which figures
prominently in BCS-theory superconductivity and relates to an
enormous variety of mechanical—physical—thermal properties.

This study has three principal purposes. First, extend our pre-
vious studies of second-order and third-order elastic properties of
diamond [2]. Second, build on research of Vogelgesang and co-
workers in which a quantum-mechanical analysis of zero-point
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motion and lattice anharmonicity yielded the isotopic depen-
dence of the bulk modulus [3], and extend their results by deriving
expressions for cq1(x) and cq3(x). Third, clarify discrepancies be-
tween theory and measurement. Vogelgesang and coworkers pre-
dicted a very small isotope effect in the bulk modulus: only a 0.1%
increase at X = 1 compared with the value at x = 0. That result is
quite inconsistent with an ultrasonic measurement of cq3(x) by
Hurley and colleagues in which c¢j; at x = 0.99 was found to in-
crease by 87% compared to the value at x = 0, inferring a 17% in-
crease in the bulk modulus at x = 1 compared to x = 0 [4]. This
discrepancy was mentioned by Plekhanov in an extensive review of
isotope effects [5].

2. Computational method

Calculations used the ab initio implementation of density-
functional theory embodied in GAPSS (Gaussian Approach to
Polymers, Surfaces, and Solids). An overview of the GAPSS program,
along with descriptions of the basis sets, computational parameters
and methods for establishing convergence of computed physical
properties, among other details, were reported in our previous
study of diamond [2].

In this study, calculations use two distortions types labeled I and
IlI, where the labels are consistent with the previous study [2]. The
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corresponding Eulerian tensor elements are [e,¢,6,0,0,0] and
[e,e,—€,0,0,0], using the six-component Voigt notation:
[e1, €2, €3, €4, €5, €6]. Elastic coefficients and force constants are
converted from an energy basis to a pressure basis by dividing by
the volume of the rhombohedral unit cell (described below in the
Theory section). All elastic properties are calculated in the Eulerian
framework (infinitesimal strain). For comparison, the elastic
properties associated with distortion I are also calculated in the
Lagrangian framework (finite strain). The connection between the
two is described in Appendix A.

Physical properties and statistical error were calculated as fol-
lows. Equilibrium total energy, lattice parameter, and second-order
force constant were determined by fitting the computed total en-
ergies to Hooke's law over the harmonic region. The extent of the
harmonic region was assigned at the strains beyond which the total
energy deviated from Hooke's law. Force constants were then
determined by fitting all energies to a third-order expression while
holding equilibrium energy and lattice parameter fixed at their
harmonic values, allowing only the second-order and third-order
force constants to vary in a two-parameter fit. Statistical errors in
the reported force constants were evaluated using five sets of
computed data points. One set consisted of the force constant
calculated using N points, where N = 32 (distortion I) and N = 27
(distortion III). The four remaining sets consist of N-8 data points. In
each set, eight unique combinations of points are removed from the
anharmonic region: four from the compression side (negative
strain) and four from the expansion side (positive strain). Reported
properties are arithmetic averages of the five sets; reported sta-
tistical error is the root-mean-square deviation from the mean for
each distortion type.

Effects of internal relaxation were found to be negligible. In
some cases, internal relaxation introduces additional degrees of
freedom because symmetry departs from tetrahedral. For distor-
tion III, the four bond lengths remain equal (particular to the value
of strain), and the bond angles depart from the tetrahedral value
(109.5°). Therefore, to quantify effects of internal relaxation, the
total energy was minimized for distortion III, with respect to the
three internal coordinates of the interior carbon atom C2, for zero
strain and for strain near the harmonic limit ( +0.02). Fractional
coordinates at the minimum were within 0.2% of the original
values, and the total energy at the minimum decreased by less than
5 x 107> au, only slightly above the level of numerical precision
(2 x 107> au). Consistent with these findings, changes in the
nearest-neighbor bond length and changes in the bond angles,
compared to the original values, were very small, within 0.09% and
0.8%, respectively. These results indicate that the level of internal
relaxation is small, consistent with the high degree of point sym-
metry retained by C2 during distortion III. This finding agrees with
the prediction that diamond's internal-strain parameter is espe-
cially small, much smaller than other group-IV elements: Si, Ge, and
o-Sn [6].

3. Theory

To quantify the effect of isotopes on the elastic constants of a
material, it is necessary to go beyond an ordinary classical treat-
ment to a quantum-mechanical approach that accounts for zero-
point motion of the nuclei. In this approach, the vibrational en-
ergy can be related to the isotopic mass and to the bond force
constants that, in turn, can be related to the elastic coefficients.

Fig. 1 shows the unit cell used in our calculations. That unit cell is
the asymmetric rhombohedral subunit of the standard diamond
f.c.c. unit cell (space group Fd3m, No. 227) whose vertices are at

Cartesian fractional coordinates (0,0, 0), (1/2.,0., 1/2), <0, 15, 1&),

and (1/27 15, 0> [7]. The lattice parameters a, b, and ¢ measured at

equilibrium (zero strain) are related according to a, = by = ¢, and
a=f =y =60° The cell contains two carbon atoms C1 and C2

located at (0,0,0) and <1/4., 1y, 1/4) [7]. The observed bonding

symmetry between C2 and its four nearest neighbors (the four
vertices of the asymmetric subunit) is tetrahedral with bond length
V3a,/4. The equilibrium volume of the rhombohedral cell is
Vo = 16d3 /3+/3, which is one fourth the volume of the f.c.c. super
cell. The labeling convention used to define strain in the rhombo-
hedral cell is depicted by the two smaller diagrams in Fig. 1 and
described in Appendix B.

The change in a material's electronic energy relative to the
equilibrium (unstrained) configuration is denoted by AU, defined
by the equation

1 1
AU = 5> _cieie) + g D Cigeicjer + - M
i ijk

in which terms are shown through third order. Here, AU is the
change in total electronic energy (kinetic, Coulomb, and exchange-
correlation) per unit volume at zero-temperature. Parameters «;, ¢j,
and g denote strain in fractional units, ¢; and ¢;; denote the sec-
ond- and third-order elastic coefficients, and indices {i,j, k} take
the values one through six.

In diamond, symmetry dictates three independent c;
(c11,€12,Ca4) and six independent Cijk
(c111, €112, €123, C144, C166, C456)- For distortions that retain the
orthogonality of the f.c.c. unit cell, that is e4 = e5 = ¢g = 0, Eq. (1)
takes the following form:

— 1
AU = 3 {C“ (8% + E% + 8%) + 2c12(e162 + €163 + 8283)]

1
+ 6 [C]]] (8? + 83 + 83) + 3¢112 (6%82 + 8%83 + 818%
+ 838% + e%el + 6‘%82) + 6C1238162€3 ], (2)

where fourth- and higher-order terms are omitted.
For distortion I (uniform dilation), Eq. (2) simplifies as follows:

— 1 1
AU(I) = E(BCH + 6C12)£% +§(3C1]1 + 1861]2 + 6C123)8:1)’7
(3a)
k; = 3c11 + 6c12, (3b)
g1 = 3¢111 + 18¢112 + 6¢123, (30)

thus yielding definitions of the corresponding second-order and
third-order force constants k; and gj, respectively.

For distortion III, the analysis in Appendix C shows that AU can
be expressed solely in terms of ¢1, akin to Eq. (3a). Specifically, the
four nearest-neighbor bond lengths are equal at each value of
strain, and the contribution of changes in bond angles is negligible
compared to the contribution of changes in bond length. As a result,
the angular dependence in AU can be omitted, thus yielding the
following expressions for change in total electronic energy and
associated force constants of distortion III.
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