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a b s t r a c t

Phase field (PF) models are one of the most popular methods for simulating solidification microstructures
due to their fundamental connections to the physics of phase transformations. However, these methods
are numerically very stiff due to the multiple length scales in a solidifying material, from the nanoscopic
solid-liquid interface, to dendritic structures on the order of hundreds of microns. While this problem can
be greatly alleviated by thin-interface analytical treatments of the PF equations, additional numerical
methods are required to explore experimentally relevant sample sizes and times scales. It was shown
about 18 years ago that the use of dynamic adaptive mesh refinement (AMR) can alleviate this problem
by exploiting the simple fact that the majority of the solidification kinetics occur at the solid-liquid inter-
face, which scales with a lower dimensionality than the embedding system itself. AMR methods, together
with asymptotic analysis, nowadays provide one of the most efficient numerical strategies for self-
consistent quantitative PF modelling of solidification microstructure processes. This paper highlights
the latest developments in the AMR technique for 3D modelling of solidification using classical phase
field equations. This includes a move away from finite element techniques to faster finite differencing
through the use of dynamic mini-meshes which are each associated with each node of a 3D Octree data
structure, and distributed MPI parallelism that uses a new communication algorithm to decompose a
3D domain into multiple adaptive meshes that are spawned on separate cores. The numerical technique
is discussed, followed by demonstrations of the new AMR algorithm on select benchmark solidification
problems, as well as some illustrations of multi-phase modelling using a recently developed multi-
order parameter phase field model.

� 2017 Published by Elsevier B.V.

1. Introduction

Solidification microstructures serve as paradigms for pattern
formation in many non-equilibrium processes in materials science,
biology and chemistry. In materials science, non-equilibrium phase
transformations such as solidification, or solid state precipitation,
often produce complex dendritic networks whose patterning and
thermo-solutal kinetics establishes the microstructure and proper-
ties of the material. In the case of solidification, the as-cast

dendritic microstructure impacts the macroscale properties of a
material even after significant additional thermal-mechanical pro-
cessing. Dendritic size, shape and distribution have far-reaching
effects on the mechanical, electrical and optical properties of the
resultant material [1].

An extensive body of research has been compiled over the years
on dendritic solidification. One of the most ubiquitous numerical
tools for its numerical modelling is the phase field approach. The
phase-field (PF) methodology has emerged as a highly robust
theoretical formalism to study solidification processes [2–8],
but is increasingly expanding its scope for morphological evolution
processes beyond materials processes. It is a mesoscopic
continuum-level formalism, which has its origins in the diffuse
interface theory of van der Waals, Cahn-Hilliard [9,10] and the
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Ginzburg-Landau [11] theories of phase transitions. In the method,
smooth order parameter field variables, i.e., phase-fields, are intro-
duced to represent order changes between phases, and a free energy
functional is constructed in terms of these to account for the ther-
modynamics of the system. Dynamics then follow from dissipative
gradient flow minimization of the free energy functional. The
method has evolved past its theoretical origins, being used to
describe various microstructure evolution phenomena such as
solidification of multiple crystal orientations [12–14], solidification
of multiple components and phases [15–17], defect-solute interac-
tions [18], elasticity [19,20] and plasticity [21]. Since the introduc-
tion of the phase field technique to mainstream materials science
around the early 1990s, the complexity of alloy systems modelled
using phase field models has progressively increased. Phase field
models are now routinely used to study multiple complex alloy
systems, some in a quantitative manner through the use of
thin-interface corrections in the various solute fields [22].

While phase field models have become the standard platform
for dendritic solidification studies, considerable efforts have been
devoted into making their predictions quantitive. The challenges
here is grounded in the wide range of relevant length scales, from
the width of the solid-liquid interface and its capillary length to the
radius of curvature of a growing dendrite arm and the diffusion
length of impurities or heat. Efforts to overcome these challenges
have generally have followed two, often times complimentary,
strategies. The first has been the development of asymptotic and
thin-interface treatments of the PF equations, which prescribe
how to self-consistently increase the interface thickness in such a
way to recover an appropriate sharp-interface limit of solidifica-
tion [4,23,17]. The second approach has focused on numerical
treatments of phase field equations. Two successful methods
include adaptive mesh refinement (AMR) methods[3] and GPU
acceleration of fixed grid simulations [24,25]. These two methods
also have the potential to complement each other and allow for
even greater simulation acceleration. AMR algorithms have been
successful in allowing for highly efficient and quantitative simula-
tions of dendritic structures. This technique dynamically estab-
lishes a higher density of grid points at the interfacial regions. In
doing so, computational resources are allotted mainly around the
interface regions where the morphological changes occur. AMR
was initially introduced to elucidate kinetics of dendritic growth
at low undercooling [3]. However, in the years since it has been
primarily used to scale up simulations to length scales relevant
to practical experiments, without compromising resolution at the
scales of the thin interface [26–31]. Early implementations of
AMR further increased computational efficiency by using fairly
straightforward shared memory parallelism, which increased the
speed of simulations through the simultaneous use of multiple
cores. These days, most high performance computing centers typ-
ically use distributed memory architectures owing to their low cost
compared to shared memory clusters. Moreover, distributed mem-
ory AMR algorithm can further scale PF simulations to significantly
larger sizes than those allowed by shared memory platforms.
Unfortunately, implementation of an efficient AMR algorithm on
distributed memory architecture is highly non-trivial. This chal-
lenge has generally made AMR less accessible as a tool for common
use in phase field simulations of complex materials processes.

This paper introduces a next generation 3D adaptive mesh
refinement algorithm written for distributed memory architecture
using the Message Passing Interface (MPI). The 3D MPI-AMR algo-
rithm is then benchmarked on two phase field models developed
for the study of solidification of practical materials, namely, one
for solidification of a pure substance in Ref. [32] and the other, a
new multi-order parameter binary alloy solidification model
developed in Ref. [33]. Since the focus of this paper is the new
AMR algorithm, these models are summarized for the interested

reader in Appendix A and references listed there. The remainder
of the paper is organized as follows. Section 2 introduces the
details of the 3D MPI-AMR algorithm and discusses its implemen-
tation for PF equations in two-dimensions (2D) and three-
dimensions (3D). Section 3 showcases the accuracy of the algo-
rithm by simulating two well-known numerical benchmarks using
the phase field models in Appendix A. These include: (i) the prob-
lem of thermally controlled dendritic growth, which is known to
follow the analytical solvability theory [32], and (ii) testing the
convergence of tip speeds and solute segregation in solutal den-
drite growth analogously to what was done in Ref. [34]. Section 4
looks at the efficiency and numerical performance of the 3D adap-
tive mesh, with and without MPI. Finally, Section 5 concludes with
some additional illustrations on the application of our new 3D
MPI-AMR algorithm on quantitative solidification modelling.

2. Parallel 3D adaptive meshing

Adaptive mesh refinement (AMR) is an automated process of
modifying a simulation mesh during the course of a simulation.
The mesh dynamically increases the refinement resolution in
regions which require higher resolution and decrease the refine-
ment resolution in regions which no longer require such resolu-
tion. This affords significant computational efficiency in free
boundary problems, which require higher resolution at the inter-
face and lower resolution in the bulk.

An open source project has been developed over approximately
the last ten years in Canada, based off the original concept and
design of the adaptive mesh refinement (AMR) code designed by
Provatas et al. [3,35] using the Finite Element method in 2 dimen-
sions. The code developed around this open source project by Pro-
vatas (McGill), Greenwood (CanmetMATERIALS) and Ofori-Opoku
(McGill/NU-NIST) [36] has significantly streamlined the original
the AMR mesh technique to take advantage of the simplicity of
the finite difference and finite volume methods of simulation.
The AMR code has been used in numerous applications at experi-
mentally relevant parameters and processing conditions [37–
40,28,41,29,42]. These versions were limited to 2-dimensions and
shared memory parallelization.

The prohibitive cost of scaling up shared memory (e.g. OpenMP)
codes to large 3D domains and a very large number of cores has
recently necessitated the development of an AMR algorithm for
distributed memory (e.g. message passing interface (MPI)) applica-
tions. This has led to a new collaboration between McGill and Can-
metMATERIALS to develop a 3D MPI AMR extension to the
aforementioned 2D code family. Specifically, CanmetMATERIALS
has recently designed an MPI wrapper software module to imple-
ment communication of 3D simulation domains, each of which is
itself an adaptive 3D data structure of mini-meshes within which
finite difference and/or finite volume methods are used to locally
update PF type equations. The wrapper uses the MPI for handling
communication between AMR data structures. Benchmarks of this
new 3D AMR code are found to scale excellently up to 2048 proces-
sor cores on CanmetMATERIALS CrayTM supercomputer.

This section first describes the core components of the AMR
algorithm, focusing on the mesh representation and the method
by which the mesh is broken down and adapted. Second the soft-
ware organization is discussed, focusing on some of the high level
algorithm flows and the object design. Thirdly, the parallel com-
munication used in the method is discussed.

2.1. Core components of the AMR algorithm

The AMR method represents a global simulation volume by a
dynamically changing mesh that adjusts to resolve volumes of
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