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a b s t r a c t

We have developed a data assimilation (DA) methodology based on the ensemble Kalman filter (EnKF) for
estimating unknown parameters involved in a phase-field model from observational/experimental data.
The DA methodology based on Bayesian statistics is able to estimate parameters by incorporating obser-
vational/experimental data into the phase-field model and evaluate the uncertainty of the estimated
parameters. In this paper, we apply the EnKF-based DA method to estimate the phase-field mobility
for a phase-field simulation of the isothermal austenite-to-ferrite transformation in a Fe–C–Mn alloy.
Our DA method is validated through numerical experiments called ‘‘twin experiments” to verify that
the DA method can estimate a priori assumed-true phase-field mobility from synthetic observational
data. The results of the twin experiments using various initial phase-field mobilities show that our DA
methodology can successfully estimate the true phase-field mobility, even when the initial value largely
deviates from the true value. Furthermore, our DA method reveals the sampling interval for observational
data necessary to accurately estimate the parameter and its uncertainty.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, numerical simulations have been extensively applied
to study microstructural evolution in materials with the goal of
realizing high-throughput material design [1]. The phase-field
method has attracted considerable attention because it allows
the simulation of microstructural evolutions based on the total free
energy of the material [2–4]. The phase-field method has already
been used to simulate various types of microstructural evolution
including solidification in alloys [5–7], phase transformations in
steels [8–11], grain growth [12,13], and recrystallization [14,15].
However, the phase-field method often requires immeasurable
material constants, unknown parameters, initial conditions, and
boundary conditions to simulate realistic microstructural evolu-
tion processes. One of these parameters is the mobility of the phase
field (hereinafter called the phase-field mobility), which character-
izes the rate of interfacial migration. In previous studies, the opti-

mal value of phase-field mobility has been determined from
experimental data. For example, the phase-field mobility used in
the phase-field simulation of the austenite-to-ferrite (c? a) trans-
formation in a Fe–C–Mn alloy was selected to reproduce the exper-
imentally measured phase fraction curves [8]. However, such trial-
and-error identification of the parameter is a time-consuming task,
and the uncertainty in the resulting parameter has not been
evaluated.

Data assimilation (DA) has been employed as a computational
technique for estimating model parameters and states of target
systems as well as for efficiently improving simulation models by
embedding experimental data into the models [16]. DA begins with
the definition of a stochastic variable called a state vector, which
contains all of the physical variables of a target system and some-
times includes model parameters involved in a given simulation
model. The state variable follows a probability density function
(PDF), which reasonably provides an optimum solution that maxi-
mizes values such as a likelihood or a posterior distribution. The
PDF also provides the uncertainty in the optimum state variables
based on the broadness of the PDF in the neighborhood of the opti-
mum. DA continuously updates the PDFs, starting from a given
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prior PDF, by incorporating experimental data into the existing PDF
based on Bayes’ theorem [17,18]. As explained in many studies
[16–18], the DA algorithm is generally categorized into two types:
sequential (or online) DA based on a sequential Bayesian filter such
as a Kalman filter, EnKF [19,20], or particle filter [21,22] and non-
sequential (or offline) DA based on a method such as the adjoint
method [23,24].

DA has mainly been used in natural sciences such as meteorol-
ogy [25], oceanography [26,27], seismology [28], and fluid dynam-
ics [29]. Recently, some DA methodologies have been applied to
phase-field simulation, representing the first application of DA in
materials science. Koyama et al. used a particle filter to identify
the gradient energy coefficient in a phase-field model of the spin-
odal decomposition in Cu–Ag alloy [30]. They estimated the com-
position gradient energy coefficient to fit the experimental data.
The particle filter, which is based on the Monte Carlo method,
numerically computes integrals of PDFs (see Section 3.4). Although
the particle filter is easy to implement, degeneracy becomes a
problem as the dimension of the state variable increases (i.e., as
the number of variables increases). Therefore, the particle filter is
generally applicable only to small problems. Ito et al. developed
a new adjoint method for non-sequential DA [31]. Unlike conven-
tional adjoint methods, this second-order adjoint method allows
the evaluation of uncertainty even in the case of a massive auton-
omous system. This method was validated through numerical tests
called twin experiments using synthetic observational data related
to a two-dimensional phase-field model of solidification in a pure
material. The twin experiments showed that the a priori assumed-
true initial condition and model parameter were completely repro-
duced with a practical computational cost. When an adjoint
method is implemented in a simulation model, the computational
cost needed to complete DA is usually much smaller than when a
particle filter is used. However, implementing the adjoint method
requires complex programming, and slight changes in the simula-
tion model require extensive modifications to the DA code.

In this paper, we develop an EnKF-based DA methodology for
estimating unknown parameters along with initial and boundary
conditions used in phase-field simulations from experimental/
observational data. In principle, the EnKF eliminates the degener-
acy problem inherent in the particle filter, and considerably less
programming effort is required compared to when using the
adjoint method. To validate our DA method, twin experiments
were performed to determine whether the DAmethod works prop-
erly as a parameter optimizer. The twin experiments performed in
this study attempt to reproduce the a priori assumed phase-field
mobility in a one-dimensional phase-field simulation of the
isothermal austenite-to-ferrite (c? a) transformation in a Fe–C–
Mn ternary alloy. Through the twin experiments, we clarified the
influences of the initial value of phase-field mobility and an obser-
vation frequency, which is the time interval to obtain observational
data, on the estimation accuracy of the true phase-field mobility.

2. Phase-field model

The phase-field model of the c? a transformation in Fe–C–Mn
alloy used in this study is based on the models proposed by
Wheeler et al. [32] and Yeon et al. [33]. The phase-field variable
/ (r, s) is defined as a non-conserved order parameter denoting
the local volume fraction of the c phase. Here r and s represent
coordinates and a unit of time, respectively. / (r, s) takes the value
of 1 at coordinates inside the c phase and 0 inside the a phase. / (r,
s) varies from 1 to 0 at the interface between phases c and a. The
concentrations of manganese (Mn) and carbon (C) atoms, cMn(r, s)
and cC(r, s), respectively, are defined as conserved order parame-
ters. Hereafter, (r, s) is eliminated for a simple description.

The total free energy of the system is defined as the Gibbs free
energy functional using the order parameters / and ci (i = Mn or C)
as

G ¼
Z
V

gchem þ gdoub þ ggrad

� �
dV ; ð1Þ

where gchem is the chemical free energy density and is expressed by

gchem ¼ f1� gð/Þggaðci; TÞ þ gð/Þgcðci; TÞ; ð2Þ

where ga and gc are the chemical free energy densities of phases a
and c, respectively, which are functions of temperature and the
local concentrations of solute elements. The chemical free energies
are given by the sub-lattice model [34], and its parameters are
assessed by the calculation of phase diagrams using CALPHAD
[35–39]. g(/) is the energy density distribution function, which
determines the distribution of chemical free energy density in an
interface and is given by the following equation:

gð/Þ ¼ /3ð10� 15/þ 6/2Þ: ð3Þ
In Eq. (1), gdoub is the double-well potential function, which is

given as

gdoub ¼ Whð/Þ ¼ W/2ð1� /Þ2; ð4Þ
where W is the height of the double-well potential. W is a function
of the interfacial energy x and the thickness of the interface g:

W ¼ 6xb
g

; ð5Þ

where b is a parameter related to g and is defined as b = 2tanh�1(1 -
� 2k), where k defines the interfacial region as k < / < 1 � k. In this
study, we use k = 0.1, giving b = 2.19.

In Eq. (1), ggrad is the gradient energy density, which is given by

ggrad ¼ a2

2
jr/j2; ð6Þ

where a is the gradient energy coefficient and is given by

a ¼
ffiffiffiffiffiffiffiffiffiffi
3xg
b

r
: ð7Þ

The evolution equation of the phase-field variable is derived
from the Allen–Cahn equation as [40]

@/
@s

¼ �M/
dG
d/

¼ �M/ gcðci; TÞ � gaðci; TÞð Þ @gð/Þ
@/

þW
@hð/Þ
@/

� a2r2/

� �
; ð8Þ

where M/ is the phase-field mobility, which is estimated by EnKF-
based DA in this paper.

The evolution equation of the concentration field ci (i = Mn or C)
is derived from the Cahn–Hilliard equation [41]:

@ci
@s

¼ r � Mir dG
dci

� �
¼ r � Mir @gchem

@ci

� �
; ð9Þ

where Mi is the diffusion mobility of atom i (i = Mn or C) and is
expressed as

Mi ¼ ð1� /ÞMa
i þ /Mc

i ; ð10Þ

whereMj
i represents the diffusion mobility of atom i (i = Mn or C) in

phase j (j = a or c) and is given by

Mj
i ¼

Dj
i

@2g j

@c2
i

� � : ð11Þ
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