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a b s t r a c t

Phase field models have recently been used to investigate the physical behavior of droplets in static as
well as dynamic situations. As those models are often driven by an Allen-Cahn evolution equation, their
stationary solution is given by the first order optimality condition of an energy functional. This includes
the possibility of computing saddle points and maxima rather than minima of the energy functional. The
present work shows the post-processing of eigenvalues and eigenvectors of the system matrix of the
phase field model in order to investigate the stability of equilibrium droplet configurations. This post-
processing can easily be ported to other evolution equations. The underlying phase field model is
described and the resulting discrete finite element eigenvalue problem is stated. The investigation of
eigenvalues and eigenvectors is illustrated by examples.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Understanding how droplets interact with each other as well as
the ability to predict wetting phenomena is highly important in a
variety of applications, e.g. pyrometallurgical processes [1] or
inkjet printing [2]. Phase field simulations in which the presence
of a phase is described by a continuous order parameter are cap-
able of gaining this knowledge not only for a two-phase system
but also for systems with multiple phases [3–5].

Depending on the case of application, some phase field models
examine the static equilibrium [3] of droplets while others investi-
gate the dynamics of (possibly) multicomponent fluid flows [2].
Phase field models offer a straightforward way to consider
dynamic as well as static wetting scenarios on a variety of surface
geometries. Especially in the case of microstructured surface wet-
ting a profound knowledge of the static equilibrium wetting state
of droplets is relevant and can serve as a starting point for a deeper
understanding of the underlying effects. Regarding dynamic wet-
ting of microstructured surfaces makes it harder to distinguish

between the different effects due to a greater number of
parameters.

The fact that there is often a large difference between the ini-
tialization state of the phase field calculation and the final solution
brings the necessity of using an evolution equation in order to
gradually relax the phase field towards the static solution. Most
commonly, an Allen-Cahn [6,3,7] or Cahn-Hilliard (see for instance
[2] and the references therein) type evolution equation is chosen.

In order to give the phase field models a physical relevance,
molecular simulations can provide a link to the required input
parameters for the phase field model and interaction potentials
[8]. Phase field studies that obtain their input parameters from
molecular simulations can, for instance, be found in [8–11]. Crucial
input parameters for phase field models investigating droplet
behavior, like the contact angle or the width of the transition zone
between the liquid and the gas phase, could, for example, be
derived from [12].

When using a phase field model to compute the static equilib-
rium configuration of a droplet that is in contact with a solid sur-
face the solution is given by the first order optimality condition of
an energy functional. As this can lead to a computation of saddle
points and maxima rather than minima of the energy functional,
a closer investigation of the obtained solution becomes necessary
in order to determine the stability of the solution and if a minimum
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energy configuration is attained. While much work has been done
on the stability analysis of droplets on a variety of different sub-
strates, see e.g. [13–22], the investigation of the static solution
state of a phase field model in order to determine the character
of the obtained solution needs (to the best of the authors’ knowl-
edge) yet to be done and is the main purpose of the present work.

The basic framework of computing the solution of a phase field
model by solving the first order optimality condition of an energy
functional is commonly used in a variety of different phase field
models. Therefore, the presented post-processing can easily be
adapted to a wide range of phase field models and is not limited
to the specific case presented in this paper.

The following sections will first give an introduction to the
underlying phase field model. Subsequently, an investigation of
the eigenvalues and eigenvectors of the systemmatrix and thereby
of the stability of droplet shapes is undertaken. In order to illus-
trate the stability analysis three examples are presented.

2. Phase field model

The present work incorporates a phase field model for a two-
phase droplet system (liquid/gas) that is capable of regarding the
contact angle between the liquid and a solid surface as well as pre-
serving a specified droplet volume. Since the static solution of
small-scale droplets is considered, the influence of gravity is
neglected. After a description of the phase field model some details
of the numerical implementation are given and the considered
eigenproblem is formulated.

2.1. Model description

Based upon a continuous order parameter uðx; tÞ that indicates
whether the gas or the liquid phase is present at a certain location

u ¼ 0; for gas
1; for liquid

�
; ð1Þ

the free energy F is defined as
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Here, X is the domain in which the gas and the liquid phase exist
and @Xs denotes the part of the boundary where X is bounded by
a solid surface. In the following, F is simply referred to as energy.
The first contribution to F includes the separation and gradient
terms which are well known for phase field models. The surface
tension between the gas and the liquid phase is given by cGL and
f ðuÞ is a classical double well potential

f ðuÞ ¼ u2ð1�uÞ2: ð3Þ
The separation and gradient terms are weighted in such a way

that the width of the transition zone between gas and liquid can
be adjusted by j. In order to give j a physical meaning it can be
set to a value that represents the width of the density gradient
between liquid and gas (approximately 1 nm). As mentioned this
width can be obtained from molecular simulations. However, since
the width of the transition zone between gas and liquid needs to be
resolved by an adequate number of finite elements, simulations
that are not done on a molecular scale require a larger choice of
j in order to limit the numerical cost. For an interpretation of
the parameters in phase field simulations, see e.g. [23]. A deeper

discussion of the width of the transition zone and the so called
sharp-interface limit beyond which the phase field results do not
depend on the width of the transition zone can for instance be
found in [24] or [25].

Solely minimizing the energy contributed by the surface tension
cGL would inevitably cause the drop to shrink and vanish. Therefore,
an additional volume constraint has to be added in order to pre-
scribe the liquid volume Vl. Ideas to enforce a volume constraint
within a phase field model are presented in [6,4]. In the present
work we choose a Lagrange multiplier k to incorporate the volume
constraint (second contribution to (2)). In comparison to a penalty
term this adds one global degree of freedom k which only margin-
ally rises the numerical cost for the finite element implementation.
During the simulation, the liquid volume Vl ¼

R
X hðuÞdV is con-

served with the target volume V0 without the need of computing
and updating an intermediate solution. Therefore, the volume con-
straint does not contribute to the free energy of the domain. The
value of k is equivalent to the difference between the pressure
inside and outside of a droplet which can also be obtained analyti-
cally by the Young-Laplace equation for spherical droplets [26].

The third contribution to (2) adds the energy contributions of
the surface tension between the solid surface and the liquid cSL
as well as the surface tension between the solid surface and the
gas cSG and allows for an adjustment of the contact angle H
between a droplet and a solid surface [3]. With these energy con-
tributions the natural boundary conditions read

3
2
cGLjru � n!þh0ðuÞðcSL � cSGÞ ¼ 0; ð4Þ

for the part of the boundary where X is bounded by a solid surface
@Xs and

ru � n! ¼ 0; ð5Þ

for the remaining boundary of X. Here, n
!
is the outer normal to the

boundary. Young’s equation for the contact angle

cosH ¼ cSG � cSL
cGL

ð6Þ

is not explicitly prescribed. However, it can be shown that boundary
condition (4) leads to Young’s equation. For more details the reader
is referred to [27].

For numerical reasons (smoothness and stability) the interpola-
tion function [28]

hðuÞ ¼ u3ð6u2 � 15uþ 10Þ ð7Þ
is introduced in (2). For both, the volume constraint as well as the
energy contribution from the contact with the solid, this smooth
function brings the advantage that h0ð0Þ ¼ 0 and h0ð1Þ ¼ 0 while sat-
isfying hð0Þ ¼ 0 and hð1Þ ¼ 1.

Cahn-Hilliard type approaches have a stiff numerical behavior
due to the fourth order spatial derivatives and (low order) bilinear
elements cannot be applied [29]. For their implementation in the
FE context techniques like mixed finite element methods, coupled
equations, interpolation functions that have a high degree of con-
tinuity, or a discontinuous Galerkin method are required [30].
Without claiming completeness we cite [30–32,29]. In the context
of explicit finite differences the Cahn-Hilliard type approach
requires small time steps thus the identification of equilibrium
states is very cumbersome. To bypass these drawbacks an evolu-
tion equation of Allen-Cahn [33] type is chosen for the presented
FE model as it allows for a simpler and therefore resource efficient
implementation [7] and has proven to be useful for the simulation
of droplets [3,6,7]. Although the Allen-Cahn evolution equation
might follow a different kinetic path to find the static equilibrium
state of a droplet it will reach the same stationary solution as the
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