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a b s t r a c t

We study materials with spatial gradients in nanoscale grain size (5–120 nm), and quantitatively exam-
ine the effect of spatial gradient on microstructure evolution and thermal stability using mesoscale
Monte Carlo modeling and statistical analysis. The spatial grain size gradient weakens and the grain size
distribution widens at elevated temperatures, accompanied by grain rounding and movement of grains
along the gradient direction. Introducing heterogeneous grain boundary networks into gradient materials
leads to better preservation of the spatial grain size gradient but less equiaxed grains. Coarsening in small
grain regions is accompanied by an increase in the local fraction of low-energy grain boundaries, as these
are competing mechanisms for reducing total energy, and spatial gradients in grain boundary character
distribution and triple junction character distribution develop in the material. We further compare con-
cave, linear, and convex gradient materials with increasing grain size gradient for small grains. Grains in
convex gradient materials have the highest grain growth rate compared to grains of the same size in lin-
ear and concave gradient materials. The accelerated grain growth in the presence of a steeper grain size
gradient is attributed to a change in local grain neighbor environment that promotes grain boundary cur-
vature (and pressure) and enhances the driving force for grain growth.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nanocrystalline materials usually exhibit high yield strength
and hardness but limited tensile ductility [1–4]. There is rarely a
single grain size that simultaneously optimizes strength and duc-
tility. Recently, nanocrystalline materials with bimodal grain size
distributions [5] and with spatial grain size gradients [6–9] have
been explored, with the aim to optimize competing properties.
Surface nanocrystalline materials [6,7,9], in which the grain size
increases from nanocrystalline (e.g., 20 nm [7]) at the surface to
microcrystalline at the core (e.g., 10 lm beyond a depth of
200 lm [7]), have been fabricated by various surface deformation
techniques [9–15]. Synergistic strengthening in graded regions
[16], extensive strain hardening [17], good tensile ductility
[18–21] and fatigue resistance [22–24] have been demonstrated.
Patterned nanocrystalline materials, such as Ni-W electrodeposits
with grain size gradually decreasing from 70 nm to 20 nm over a
distance of 100 lm, multilayered structures with alternating
10-lm-thick layers of 70 nm and 7 nm grain sizes, as well as
nanocrystalline-amorphous composites of Al-Mn [25,26], have

been fabricated by modulating solute concentration during elec-
trodeposition [8,25]. Nanoindentation of a Ni-W sample with grain
size graded from 90 nm at the top to 20 nm at the bottom revealed
higher pile-up than alloys of either grain size, possibly due to the
yield strength gradient that led to larger plastic strains near the
indentation impression [27,28]. Spatial grain size gradients were
also introduced into shape memory alloys for functional grading
as martensitic transformation temperature and stress are grain size
dependent, often by nonuniform grain growth under surface laser
annealing of nanocrystalline NiTi films [29].

Nanocrystalline materials are generally susceptible to
microstructure evolution due to the high density of grain bound-
aries in them [30–34]. For example, the grain size in nanocrys-
talline Cu increases from 43 nm to 70 nm after 5 h annealing at
100 �C and to 278 nm at 500 �C [35]. Grain growth in nanocrys-
talline materials may occur by grain boundary migration [36]
(and also possibly grain rotation [37,38] and grain boundary slid-
ing [39]), and depends on grain boundary energy c [40,41] and
mobility M [42]. Grain growth has also been observed in nanocrys-
talline materials during deformation, such as during tension [43–
46], compression [44,47,48], fatigue [49,50], torsion [51–53],
indentation [54–56] and creep [57–59].

In graded nanocrystalline materials, the grain growth behavior
depends on the grain size distribution as well as the spatial grain
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size gradient. Hunderi et al. derived the growth rate of a bubble
with size di [60]:
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where R sums over its neighbors, and Aij is the contact area between
bubbles i and j. When all neighbors have equal dj, Eq. (1) is reduced
to a form similar to the Hillert equation for grain growth, Eq. (2)
[61,62]:
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where a is a geometrical factor equal to 2 and 4 for two- and three-
dimensions, respectively, and dc can be viewed as a critical (or aver-
age) grain size. If di is below/above dc, grain i tends to shrink/grow.
A system with one [63] or several large grain(s) [64] embedded in a
matrix of small grains is commonly studied, and grain boundaries in
the system are usually assumed to have the same properties. In this
case, the size of the initially large grain i will approach those of the
matrix grains after grain growth, and @½diðtÞ=dcðtÞ�=@t depends on
the grain size distribution. Benson and Wert compared the evolu-
tion of grain structures of different initial grain size distributions
characterized by dmax/dc, where dmax is the largest grain size, and
f d>2dc , the fraction of grains with d > 2dc, and concluded that higher

dmax/dc and f d>2dc enhance the initial _dc of the system [64]. More-
over, the Grain Boundary Character Distribution (GBCD) may affect
the evolution of the spatial grain size gradient, and vice versa. A
fundamental understanding of concomitant nanocrystalline grain
size gradient evolution and GBCD evolution is currently lacking.

Modeling is often performed to gain quantitative insights on
microstructure evolution. Molecular Dynamics simulations have
been performed to study grain evolution in nanoscale systems
under thermal [65,66] or mechanical [59,67] stimuli. There are also
several common mesoscale methods for simulating microstructure
evolution at larger length and time scales, such as the vertex model
[68], the phase field model [69], the cellular automata model
[70,71], the Monte Carlo Potts model [72–76], and hybrid models
combining two of these approaches [77,78]. Among them, the
Monte Carlo model, which is a discrete stochastic simulation
method [79,80], has been widely used to study microstructure evo-
lution in nanocrystalline materials [81]. For example, it was mod-
ified to incorporate the effect of triple junctions [82,83] or to study
the dominant grain growth mechanism [84]; it was also used to
model grain growth in dual-phase nanocrystalline materials [85].

Although microstructure evolution in nanocrystalline materials
with a uniform grain size has been studied experimentally and
computationally, nanocrystalline grain size gradient effects and
evolution in graded nanocrystalline materials are not quantita-
tively or mechanistically understood. In this paper, we study
thermally-driven microstructure evolution in nanocrystalline met-
als with spatial grain size gradients using the Monte Carlo model-
ing method, aiming to elucidate the influence of spatial grain size
gradient and GBCD on the concurrent evolution of grain gradient
and GBCD at the nanoscale.

2. Simulation procedures

2.1. Generating graded nanocrystalline grain structures

Our modeling systems are two-dimensional (2D) nanocrys-
talline materials with various types of spatial grain size gradients
along the y direction, which resemble gradient regions in surface
nanocrystalline materials. For simplicity, other microstructural
gradient (such as dislocation density) that might develop during

processing is not considered. As illustrated in Fig. 1(a), in the
600 nm by 1200 nm systems, the gradient region is sandwiched
between two layers with uniform grain sizes of d1 = 5 nm at the
top and d2 = 120 nm at the bottom. Grain structures are generated
using Voronoi tessellation [86], where each grain is constructed
based on one seed such that every location in the grain is closer
to this seed than any other seeding points. The grain seeds are gen-
erated using a Monte Carlo procedure while imposing a minimum
distance, dmin, between seeds to avoid small grain outliers and
improve grain uniformity in the x direction [87]. dmin(y) is set as
0.6dg(y), where dg(y) is the desired grain size at a given y location.
dg ¼ d2 for 0 6 y < 300 nm; dg ¼ d1 for 1100 < y 6 1200 nm; in
the gradient region (300 6 y 6 1100 nm),

dgðyÞ ¼
d2 � 2 � exp½aðy� 300Þ� þ 2 convex gradient
d1�d2

1100�300 ðy� 300Þ þ d2 linear gradient
d1 þ exp½bð1100� yÞ� � 1 concave gradient

8><
>: ð3Þ

where the constants a ¼ 0:005086 and b ¼ 0:005942. In each of the
Monte Carlo steps, a seed with random x and y coordinates is gen-
erated; the seed is kept only if its acceptance probability,

kðyÞ ¼ ½d1=dgðyÞ�2, is greater than a newly generated uniform ran-
dom number between 0 and 1 and its distance to the nearest seed
exceeds dmin. k is lower at small y, resulting in fewer seeds and lar-
ger grains at the bottom of the system. The Monte Carlo procedure
is repeated until the desired spatial grain size distribution is
achieved. Fig. 1(b) shows an example area in the gradient region
where the ‘‘+” symbols are grain seeds.

The modeling systems are mapped to triangular lattices with a
node spacing of 0.5 nm. A triangular lattice symmetry is chosen to
provide a large number of neighboring nodes (i.e., six neighbors) in
order to mitigate lattice effects [73]. Nodes belonging to a specific
grain are assigned a unique index (see Fig. 1(c)). Grain boundaries
are identified as interfaces between nearest-neighbor nodes with
different grain indices (grain boundary width therefore may be
considered 0.5 nm). We determine the size d of a grain from its
area A, d ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4A=p
p

. The average grain size at a specific y, dy, is eval-
uated by performing an area average of grains with any part falling
within a 10 nm-thick layer centered at y (analogous to moving
average). Fig. 1(d) plots dy at each y location in the three types of
gradient structures generated using the above procedure. The con-
vex structure exhibits the steepest spatial grain size gradient,
@dy=@y, at the top of the gradient region, while the concave struc-
ture has large spatial gradient near the bottom of the gradient
region. @dy=@y is nearly constant in the linear gradient structure.
For comparison purposes, we also run simulations on a 600 nm
by 600 nm system with a uniform grain structure (i.e., without
notable spatial grain size gradient) and with an initial grain size
of 5 nm.

We first examine the behavior of systemswhere all grain bound-
aries are assigned the same properties. The grain boundarymobility
M is set as 0:77� 10�17 m=ðs PaÞ, a reasonable value for metals at
our simulation temperature T = 473 K [42]; the grain boundary
energy c is set as 1:6� 10�20 J=bond (2.45 kT, where k is the Boltz-
mann constant). Later, we will introduce GBCD, and study systems
in which grain boundaries are classified into general boundaries
with cg ¼ 1:6� 10�20 J=bond (2.45 kT) and special boundaries with

cs ¼ 1:2� 10�20 J=bond (1.84 kT) or 0:9� 10�20 J=bond (1.38 kT);
for simplicity, M is still assumed the same for all boundaries. The
orientation of each grain is assigned by an in-plane rotation by a
random angle between zero and Umax. A grain boundary is consid-
ered special if its misorientation angle is less than a threshold
ht ¼ 15�, and otherwise is general. This binary grain boundary clas-
sification may be considered a simplification for the more general
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