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a b s t r a c t

The mathematical model for intercalation dynamics in phase-separating materials (Singh et al., 2008) is a
powerful tool for the investigation of the spinodal decomposition in nanoparticles. By means of this
model, we conduct a careful mathematical analysis of the intercalation dynamics in nanoparticles to
study the dependence of spinodal gap on the boundary reaction rate and the particle size, which can
be used for LiFePO4 battery material application. Consistent with previous investigations, we found that
for some range of the boundary reaction rate and the particle size the concentration spinodal gap is not
continuous, but it has stable ‘‘islands” where no spinodal decomposition is expected. The new important
observation is that the presence of an infinitesimally small boundary reaction rate will destabilize
nanoparticles even for infinitesimal length. In particular for nanoparticles having the size of order or less
than interphase width k, the spontaneous charge or discharge will occur at the reaction rate of order 0.1
D=k. The further raise of the intercalation rate will stabilize the system until some size limit of order two
diffusion length. The intercalation effects are proven by means of numerical simulations. We also show
that the increasing enthalpy of the spinodal mixture as well as increasing elastic energy due to the lattice
misfit can destabilize the particles and increase the spinodal gap.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Electrode materials for Li-ion undergo phase transitions during
electrochemical cycles. Lithium iron phosphate LiFePO4 is one of
the most intensively studied cathode materials for Li-ion batteries.
The insertion/extraction mechanism in LiFePO4 cathodes occurs
through a two-phase solid-solid transformation of first order
between LixFePO4 and Li1�x0FePO4 phases with x and x0 � 1. The
Li-insertion/extraction process and the spinodal miscibility gap in
this system were investigated in many experimental works
[1–8]. It was shown that interfacial charge transfer kinetics is very
important for the phase transformation behavior in Li-ion batteries
including the surface effects and the reduction of the miscibility
gap [9–14]. Meethong et al. [5,6] experimentally investigated the
particle size effects on the miscibility gap in nanoscale particles
and showed the influence of the elastic strain during lithiation/
delithiation cycles on the phase transformation behavior. Further
investigations of Weeland et al. showed the effect of the coherency
strain and surface wetting on the miscibility gap and phase

microstructure in LiFePO4 nanoparticles [15]. The surface modifica-
tion techniques such as the carbon coating [9,12] and graphene
wrapping [11] can crucially improve the electrochemical power
density of the batteries. During the experimental investigation of
intercalation phenomena in Li-ion battery cathodes on the nanos-
cale level, Tang et al. [16] found that, for small particles, the surface
effect is more sufficient and cannot be explained by the classic
phase-field model. Intercalation phenomena in this case will dras-
tically decrease the efficiency of Li-batteries preventing full charge/
discharge cycle.

A number of analytical methods have been proposed in the last
decades for a better understanding the phase transformation
mechanisms [17–21,23]. One of the most suitable computational
methods for modeling the phase transitions in electrode materials
is the phase-field modeling [20,24,25,21]. This continuum
approach allows the investigation of the phase separation dynam-
ics in nanoparticles and prediction of the various effects including
the intercalation waves and effect of coherency strain (see [22] and
references therein). In order to incorporate the insertion/extraction
mechanism in the phase-field approach, a general mathematical
model was proposed by Singth, Ceder, and Bazant (SCB model)
[20], which further was successfully used to study phase
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transformation dynamics in single-crystal nanoparticles[24–27].
The model is based on the classical Cahn-Hilliard (CH) equation,
which is a thermodynamically consistent approach to modeling
spinodal phase decomposition. Singth et al. proposed to include
the reaction or intercalation rate conditions on the boundaries
which describe the intercalation of Li+ in a particle in CH model.
The system with these new boundary conditions is called Cahn-
Hilliard reaction system (CHR). Burch and Bazant [25] investigated
the CHR system using the perturbation theory and found that the
miscibility gap as well as the spinodal gap generally shrink as
the particle size decreases. Furthermore, the size-dependent spin-
odal gap continually reduces when the boundary intercalation rate
increases. Tang et al. [28] investigated the effect of coherency
strain on the phase transition in the presence of intercalation
boundary conditions. Dargaville and Farrell [26] examined the full
two-dimensional Cahn-Hilliard reaction system including aniso-
tropic strain according to the approach of Cogswell and Bazant
[29] and found that the phase separation persists even in small
crystals. Bai et al. [22] showed the suppression of phase separation
above a critical current in LiFePO4 cathodes and concluded that a
very slow discharge rate could reduce the cycle life of the battery.
Then Dargaville and Farrell[27] used the high-rate experimental
data to validate the previously developed CHR models and
obtained a poor fit by variation of model parameters. Recently,
Heo et al. [21] proposed a phase-field model for simulating phase
microstructure evolution in the presence of surfaces. In their work,
a Khachaturyan microelasticity theory was proposed for the solu-
tion of the elastic problem and incorporated in the Cahn-Hilliard
equation in a similar way to Cogswell and Bazant [29].

Nowadays, the Li-ion battery technology is being developed in
two main directions according to the suggestions of experimental
and theoretical studies: (i) decreasing the size of cathode particles
to nanoscale prevents spontaneous decomposition to some level
and improves the power density; (ii) the use of various nano- or
micro-coating changes the boundary reaction rate with obvious
influence on the charging rate.

In the present work, we focus on the Li intercalation in LiFePO4

nanoparticles for Li-ion battery applications. We conduct a detailed
analysis of the influence of the boundary reaction rate on the size
and structure of the spinodal Li concentration gap. The influence of
the elastic strain is also investigated. The paper is organized as fol-
lows: in Section 2, we briefly describe the model equation. Then, in
Section 3, the procedure of linear stability analysis which we use to
find the spinodal gap as a function of the composition and particle
size is presented. The results of the numerical calculation of the
spinodal gap for various boundary conditions and strain energy
contributions are presented in Section 4.

2. Model description

2.1. Bulk equations

The general SCB model for intercalation dynamics [20]
describes three-dimensional systems with intercalation flux
boundary conditions. The intercalant influx is imposed perpendic-
ular to all surfaces of a nanoparticle with a local rate, R. Experi-
ments in real LiFePO4 nanoparticles which have plate-like form
showed that the kinetic processes of the phase transition are
strongly anisotropic [4,7,8]. Based on experimental and theoretical
studies, Delmas et al. [8] suggested a ‘‘domino-cascade” mecha-
nism of the phase transition, which is explained by the existence
of structural constraints at the reaction interface. According to this
approach, the concentration modulations occur in [100] direction
with a uniform concentration profile in two other directions while
the intercalation/deintercalation reaction occurs along the [010]

direction. However, this is just the case at the phase boundary.
These findings make the application of the one-dimensional model
presened in Ref. [25] for the analysis of spinodal decomposition by
perturbation theory convenient.

Here, we rewrite the basic equations of SCB model for the one-
dimensional system following Ref. [25] to make our further analy-
sis consistent and clear. The classical Cahn-Hilliard type chemical
potential of the investigated system is

l ¼ @ghomðcÞ
@c

� K
@2c
@x2

; ð1Þ

where ghom is the free energy and K is the gradient parameter. The
free energy in the CH model can be written as

ghomðcÞ ¼ acð1� cÞ þ kBT c log c þ ð1� cÞ logð1� cÞ½ � þ Ecoh; ð2Þ

where a is the enthalpy of mixing per site, kB is the Boltzmann con-
stant, T is the temperature, and Ecoh is the elastic energy due to the
lattice misfit defined as [21]:

Ecoh ¼ 1
2

Z
bV d3k

ð2pÞ3
½Bðn̂Þĉ2�; ð3Þ

where Bðn̂Þ is a function of the direction n̂ in the reciprocal space
and ĉ is Fourier transform of the concentration.

Following Ref. [25], we define the flux of Li+ ions as

J ¼ �qcM @l
@x

; ð4Þ

where M is a mobility parameter and q is the bulk density. The
dependency on the concentration makes the behavior of the system
asymmetric. Therefore, the center of instability range is shifted to
c0 > 0:5. Note that some authors prefer to use a symmetric model
[28].

The time evolution of the concentration is given through the
continuity equation

@c
@t

þ 1
q

@J
@x

¼ 0: ð5Þ

Employing the above equations, we obtain the fourth-order
equation for the concentration

@c
@t

¼ @

@x
cM

@

@x
@ghom

@c
� K

@2c
@x2

 ! !
: ð6Þ

2.2. Boundary conditions

We consider a particle of the size ½0; L�. The boundary conditions
on the left and on the right side are the following

@c
@x

����
x¼0;L

¼ 0 ð7Þ

ðJ � qsRÞjx¼0 ¼ 0; ðJ þ qsRÞjx¼L ¼ 0; ð8Þ

where R is the insertion reaction rate which depends on the differ-
ence between the boundary value of the chemical potential l and
the ”external” chemical potential le ¼ const:

R ¼ Rins 1� exp
l� le

kBT

� �� �
; ð9Þ

Here, Rins is the rate parameter and qs is the surface density.
For the solution of the elastic problem, the zero surface traction

boundary conditions are applied. These conditions result from the
relaxation of coherency strain energy at surfaces of nanoparticles.
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