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a b s t r a c t

This paper introduces an active learning approach to the fitting of machine learning interatomic poten-
tials. Our approach is based on the D-optimality criterion for selecting atomic configurations on which
the potential is fitted. It is shown that the proposed active learning approach is highly efficient in training
potentials on the fly, ensuring that no extrapolation is attempted and leading to a completely reliable ato-
mistic simulation without any significant decrease in accuracy. We apply our approach to molecular
dynamics and structure relaxation, and we argue that it can be applied, in principle, to any other type
of atomistic simulation. The software, test cases, and examples of usage are published at http://gitlab.
skoltech.ru/shapeev/mlip/.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many research areas in materials science, molecular physics,
chemistry, and biology involve atomistic modeling. For example,
in molecular dynamics (MD), as a rule, one of the following two
classes of interatomic interaction models is used. The first class
is the empirical interatomic potentials—they are very computa-
tionally efficient and allow for simulating large atomistic systems
for microseconds of simulation time. However, they typically yield
only qualitative accuracy. The other class is quantum-mechanical
(QM) models, such as the density functional theory (DFT). They
are very accurate, but computationally expensive. Their applicabil-
ity is typically limited to hundreds of atoms and hundreds of
picoseconds of simulation time.

Several directions of developing the models that would be both
accurate and computationally efficient have been pursued. They
include the so-called linear scaling DFT [1–3] that ensures that
the algorithmic complexity grows linearly when the size of the ato-
mistic system increases beyond hundreds of atoms. Another direc-
tion is the development of semi-empirical models, such as the
tight-binding model [4], whose accuracy and efficiency is between
those of the empirical potentials and DFT. In this paper we pursue a
more recent approach based on machine learning.

1.1. Machine learning interatomic potentials

Application of machine learning (ML) has recently been put for-
ward as a promising idea that would combine the accuracy of the
QM models and the efficiency of the interatomic potentials [5–18].
Such machine-learning interatomic potentials (MLIPs) postulate a
partitioning of the interatomic interaction energy into individual
contributions of the atoms (and sometimes bonds, bond angles,
etc.) and assume a very flexible functional form for such a contri-
bution, making it a function of the positions of the neighboring
atoms, typically with hundreds or more parameters. These param-
eters are found by requiring the energy, forces and/or stresses pre-
dicted by a MLIP to be close to those obtained by a QM model on
some atomic configurations. These configurations are called the
training set, and finding the parameters of a MLIP is known as train-
ing or fitting. One of the important features of MLIPs are their abil-
ity to approximate potential energy surfaces with arbitrary
accuracy (at least theoretically) by increasing the number of
parameters and the training set. It should be noted that there are
other, ML-based atomistic models of solids, including those pre-
dicting the energy directly without partitioning it [19,20], or con-
structing a density functional in a DFT with machine learning
[21]. A recent overview of ML-based models of materials can be
found in [22].

Each of the existing MLIPs has a nontrivial functional form
accounting for the physical symmetries of interatomic interaction.
Namely, a MLIP should be invariant with respect to translation,
rotation, and reflection of the space, and also permutation of chem-
ically equivalent atoms. In addition, the potential should have a
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local support (i.e., depend on surrounding atoms only within a
finite cut-off radius) and be smooth with respect to atoms coming
and leaving the support. In many instances, it is achieved by
designing a fixed number of descriptors [23,24]—scalar functions
that satisfy all the symmetries and uniquely encode each atomic
environment, and assuming that a MLIP is an arbitrary function
(which we call the regression model) of these descriptors. This idea
was first put forward by Behler and Parrinello [10] proposing an
ML model which they called a neural network potential (NNP),
based on their descriptors and neural networks as the regression
model. Since then, there has been many works on NNPs, see the
review papers [8,9] and references therein, and also more recent
works [5,12–15,25,26]. Another group of authors adopted the
Gaussian process regression framework [7]. They used the coeffi-
cients of spherical harmonics expansion of the smeared atomic
positions as descriptors and used the kernel-based ML model,
where the kernel was based on the distance between the vectors
comprised of those coefficients. In a follow-up paper, [17], the
authors refined this idea by proposing the smooth overlap of
atomic positions kernel, bypassing the step of designing the
descriptors. For other examples of using Gaussian process regres-
sion for constructing interatomic potentials refer to [6,27]. Three
closely related works, [28–30], use Gaussian process regression
to predict the forces on atoms directly, without predicting the
energy and taking its gradient. Finally, [18] proposes a linear
regression model with spherical harmonics coefficients as the basis
functions. In the present work, we use the moment tensor poten-
tials (MTPs) [16]. These potentials adopt a linear regression model
with polynomial-like functions of atomic coordinates as the basis
functions. The MTPs can be interpreted as having descriptors
which are based on tensors of inertia of atomic environments.

The MLIPs described above allow for improving their accuracy
through increasing the number of the fitting parameters. However,
the approximation properties of ML potentials depend not only on
their algebraic form, but also on the training set used to fit them.
Choosing a good training set for a potential with many parameters
(say, more than ten) proves to be a highly nontrivial practical prob-
lem. Indeed, all the existing MLIPs are interpolative, they fail to
give reasonable answers outside their training domain. Therefore,
a good training set should make a MLIP to be interpolative over
all the relevant configurations. Obviously, the more parameters a
MLIP involves, the larger and more diverse the training set is
required in order to fit such a MLIP.

The problem of choosing a proper training set for the fitting of a
reliable MLIP is related to the problem of transferability—the abil-
ity of interatomic potentials to extrapolate, i.e., give reasonable
predictions outside the training domain (e.g., predict the double
vacancy formation energy if only single vacancies are present in
the training set). It is hardly expected that a MLIP can extrapolate
beyond the training domain, but even developing a reliable
problem-specific MLIP that would accurately interpolate within
the training domain is nontrivial, as pointed out, for instance, by
Behler [9, Section 4]. As an illustration of this, the authors of [17]
sampled gamma surfaces (by shifting, in different ways, a part of
a crystal along a glide plane) and included them in the training
set, which allowed them to compute the properties of dislocations
accurately with the exception of their Peierls barrier. To accurately
reproduce the latter they devised a more complicated scheme of
generating configurations from the MD trajectories using one ver-
sion of their potential in order to fit a better version of their
potential.

An attractive idea is to attempt to sample the entire space of
atomic environments within, for example, a constraint on the min-
imal interatomic distance. It is, however, not clear how to do this
with sufficient accuracy due to extremely high dimensionality of
the space of atomic neighborhoods. Therefore, in practice, the

training set is usually generated by specially designed sampling
procedures such as, for example, random perturbations of ideal
crystalline configurations [18], sampling from an ab initio MD, or
a classical MD with empirical potential or another (already fitted)
MLIP [17]. These sampling procedures, however, do not ensure that
the training set covers fully, without ‘‘gaps”, the region in the con-
figuration space required for training MLIPs reliably. In other
words, a potential resulted from such a training procedure may
later encounter configurations on which this potential will have
to extrapolate.

1.2. Active learning and learning on the fly

The problem of extrapolation could be resolved if a MLIP were
able to detect extrapolative configurations, obtain the QM data
for those configurations, and be re-trained. In this scenario, the
extrapolation problem (or the transferability problem) would be
solved by reliably predicting on the fly whether a potential is
extrapolating on a given configuration. Alternatively, in the case
when learning on the fly cannot be done, the selection of extrap-
olative configurations can be done offline yielding the training
set that improves the transferability of the fitted potential.

Both scenarios are related to a set of ML techniques called active
learning (AL). In contrast to passive learning in which a potential
learns every configuration in the training set, in AL a potential is
trained only on a set of selected configurations. The key component
of any AL method is, thus, its query strategy—an algorithmic crite-
rion for deciding whether a given configuration can be treated reli-
ably by an ML model, or we need to re-train our model by querying
the QM data for this configuration. If such decision can be made
reliably then, as we show in this paper, we do not have to ensure
that the training set generated offline has all the representative
configurations.

A general overview of AL approaches can be found in [31]. In the
context of interatomic potentials, the first work that proposed AL
was [32] putting forward a Bayesian query-by-committee strategy.
AL was applied by Behler to the neural network potentials [9,
Section 4], using the query by committee-type AL strategy. Finally,
the authors of [33,34] train a machine learning model predicting
the force errors based on the distance between a given atomic con-
figuration and the training set. A very natural AL approach applica-
ble to force fields based on Gaussian process regression
[7,17,6,27,29,30], which has not yet been implemented in practice,
would be to use the Bayesian predictive variance, shown to corre-
late with the actual error, e.g., in [21].

In this paper we propose another AL approach for MLIPs based
on the D-optimality criterion [31, Section 3.5] allowing for detect-
ing the configurations on which a MLIP extrapolates. This criterion
was chosen because there exists an efficient algorithm for checking
for D-optimality [35]. Also, as will be discussed in this paper, D-
optimality has appealing mathematical interpretations, such as
decreasing the uncertainty in determining the parameters or max-
imizing the volume spanned by the training set in the space of con-
figurations, thus avoiding extrapolation. We apply our AL approach
to the fitting of MTPs, however, it is easily generalizable to a any
other linear potential, i.e., a potential whose energy depends lin-
early on the parameters, such as SNAP [18] or GAP. In principle,
we can apply AL to atomistic systems with any number of chemi-
cally different types of atoms, however, most linearly parametrized
potentials developed to date are only applicable to systems with a
single type of atoms. We demonstrate that our AL approach allows
one to train potentials on the fly with a limited number of QM cal-
culations (occurring, typically, in the initial stage of MD or another
atomistic simulation) without loss in accuracy. In addition, we
show that even without learning on the fly, AL can ‘‘optimize”
the training set, in the sense of extracting a significantly smaller
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