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a b s t r a c t

We have used a phase field model to study destabilization of cylindrical pores in a polycrystalline mem-
brane; a key feature in the model is that it incorporates surface diffusion as the mechanism for mass
transport. Using a model system in which a cylindrical pore runs through a material in which all the grain
boundaries (GBs) are perpendicular to the pore axis, we identify two elementary mechanisms for pore
failure. The first one is based just on grain boundary (GB) grooving, which causes a circular trench at
the groove, and a constriction of the pore on either side of the GB; as the groove deepens, the constriction
narrows, and eventually closes the pore. Pore closure through this mechanism is possible only when the
grain size exceeds a critical size (below which the open pore surface acquires an inverse-bamboo mor-
phology), and therefore, it is controlled by grain growth kinetics. In the second mechanism, the groove
profiles of unequal sized grains is such that the curvature differences trigger a coarsening-like process
in which atoms from the surface of smaller grains are transported to that of larger grains, causing an
ever-narrowing constriction there. A simplified model that incorporates these two mechanisms acting
in parallel is used to rationalize our observations of pore failure in polycrystalline systems.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

In a seminal paper, Keller et al. [1] showed that alumina coat-
ings prepared under specific electrochemical conditions are made
up of a continuous solid alumina phase, with a nearly periodic
array of uniformly sized cylindrical holes with their diameter in
the range of 40–300 nm. Since then, such nanoporous oxide mem-
branes have been made of zirconia [2] and titania [3] as well. While
such membranes may be used directly in applications (for exam-
ple, as catalysts [4]) they are being used increasingly as templates
for growing a variety of one-dimensional nanostructures made up
of other materials (typically, oxides or metals). Examples include
ordered arrays of nanowires of TiO2, Au and Ni [5], nanotubules
of ZnO [6], nanodots of Au [7], nanoholes of Pt [8]. In a review of
metal oxide nanowires and their applications, Shen et al. [9] have
listed the use of anodic alumina as template as one of the ‘‘bottom
up” methods for making nanowires.

Many application regimes (such as catalysis or template-
assisted growth of other materials) may expose the nanoporous
anodic oxide membranes to high temperatures, at which diffusive
processes (especially surface diffusion) are active. Also, there is

always a driving force that exists for the cylindrical pore to split
into spheres. Since the (surface area/ volume) ratio of an infinitely
long pore is inversely proportional to its radius, this driving force
increases with decreasing pore radius. Thus, the thermal stability
of such membranes (i.e., the thermal stability of the nanosized
pores in the membranes) is of great scientific and technological
interest. Several recent studies have addressed this issue experi-
mentally [10,11,2]. This forms the motivation for our computa-
tional work on this problem: what are the possible mechanisms
that may destabilize a cylindrical pore, and how long would it take
for the pore to be closed due to such mechanisms?

Among the mechanisms of destabilization of cylindrical pores,
Rayleigh instability is an obvious one. The classic work of Nichols
and Mullins [12] presented analytical results for early stages of
destabilization via Rayleigh instability; in a recent paper [13], we
used computer simulations based on a phase field model to study
the late stages of pore evolution (including its closure) mediated by
surface diffusion.

However, the solid in the porous oxide membranes is polycrys-
talline (especially after exposure to high temperature); thus grain
boundary (GB) grooving is another destabilization mechanism
leading to pore closure in such membranes. In this mechanism,
material from the root of the GB groove is transported to the pore
wall where it accumulates, and causes a constriction in the pore;
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with time, the constriction becomes progressively narrower, lead-
ing to the eventual closure of the pore. This paper is on our two-
part study of pore destabiliztion triggered by GB grooving, and
mediated by surface diffusion.

In the first part, in Section 3, we consider a model system in
which all the grain boundaries are normal to the pore axis, and
study the role of grain size in the events leading up to pore closure;
this part of our work builds on the work by Mullins on GB grooving
at a planar surface [14], and its later extension by Klinger and Rab-
kin to GB grooving of solid cylinders [15]. We then repeat this exer-
cise on a system with grains of different sizes; this reveals a second
mechanism for pore closure through grooving. While this first part
offers us valuable insights, it still misses a key feature of polycrys-
talline materials: grain growth. Thus, in the second part of our
study, in Section 4, we consider the full problem of pore evolution
in the presence of GB grooving and grain growth. As we will see in
that section, grain growth has two types of effects: in the first,
grain growth is essential when the initial grain size is smaller than
the critical size above which GB grooving can do its job of destabi-
lizing and closing a pore; in the second, it can disrupt the forma-
tion of the groove by keeping the grain boundary moving. Thus,
these two effects lead to an interesting (and non-trivial) relation-
ship between pore closure time and grain growth kinetics. Thus,
Section 4 builds on the ideas in Section 3, and elucidates the com-
plex ways in which grain growth both helps and interferes with the
processes of pore destabilization and closure.

We have chosen to address our research problem using a com-
putational route based on phase field models. Essentially, these
models describe the energy of different types of interfaces, and
how (and how fast) they may migrate under a driving force.

There are many good reasons for the use of such models (which
also explains their ever increasing popularity in recent decades),
and they have been covered well in several reviews (see, for exam-
ple Refs. [16–18]). The most important among these reasons, in the
context of our study, are the following: (a) they capture
microstructural instabilities (and we treat Rayleigh instability as
one) very well, in the sense that results from phase field simula-
tions on such instabilities are in good quantitative agreement with
those from analytical theories, and (b) they can be run right from
early stages all the way up to very late stages of microstructural
evolution; along the way, if there are topological transitions of fea-
tures (such as pore splitting, coalescence of droplets, or shrinkage
and removal of a grain during grain growth), they are handled
gracefully.

As we will see in Section 4, the second feature is very attractive
indeed; constrictions in the pore lead eventually to pore closure,
and during grain growth, many grains shrink and vanish from
the system (as a result of which previously non-neighbouring
grains become neighbours).

2. Phase field model and solution technique

Our model is a combination of the Cahn-Hilliard [19] and
Fan-Chen [20] models. We designed the model to represent a
polycrystalline solid that may co-exist with a vapour phase. To
achieve this, we use a density field qðr; tÞ, a vapour phase order
parameter hv ðr; tÞ, and a set of grain orientation order parameters
giðr; tÞ. Thus, the vapour phase is a region in which
ðq; hv ; gif gÞ ¼ ð0;1; 0;0; . . . ;0f gÞ. Similarly, the first and second
grains (for example) are regions in which ðq; hv ; gif gÞ ¼
ð1; 0; 1;0; . . . ;0f gÞ and ð1;0; 0;1; . . . ; 0f gÞ, respectively. Large gradi-
ents in q and hv help us in identifying the free surface, and large
gradients in gi represent grain boundaries. We use as many gi

fields as the number of grains in the system. We write the free
energy functional in the following form:

F ¼
Z
V
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X
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where jh and ji are the gradient energy coefficients representing
the energy cost associated with gradients in hv and gi, respectively.
The free energy density f sv q; hv ;gið Þ is written as
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Wsv sets the energy barrier height between vapour and solid. We
have used the following expressions for the functions f s and f v
and s:
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energy barrier between grain i and grain j is set by �ij,
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This free energy function f sv is a surface with minima which
represents the mutual equilibrium between the vapour phase
and each of the solid grains. The evolution of the density field vari-
able qðr; tÞ is governed by the Cahn-Hilliard equation [19].

@q
@t

¼ r � Mr dF
dq

� �� 	
ð6Þ

M ¼ Mb þ 16:0 Mgb/gb þMs/s

� � ð7Þ
M is the atomic mobility which is closely related to diffusivity.

Mb represents bulk diffusivity, Mgb represents grain boundary dif-
fusivity and Ms represents surface diffusivity. /gb is a function of
order parameters giðr; tÞ which has non zero values only at grain
boundaries and vanishes at all other locations. Similarly, /s is a
function of giðr; tÞ and hv ðr; tÞ which has non zero values only at
the surface. Our approach for incorporating enhanced surface and
GB diffusion is similar to that of several others [13,21–25]. A ten-
sorial form for Ms or Mgb (so that the atomic mobility along and
normal to the interface may be different; in the extreme case, the
mobility normal to the interface may even be made vanishingly
small) has been used to implement enhanced surface diffusivity
in Refs. [21,26,25]; we have adopted a simpler approach of using
an isotropic (scalar) form for Ms and Mgb. Our formalism is simpler
to code, and leads to faster simulations; in addition, it has been
shown to work well in our earlier study on Rayleigh instabilities
of cylindrical pores [13].
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The evolution of the order parameter fields is governed by the
Allen-Cahn equation [27].
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The kinetic coefficient L governs the relaxation rates of the h and
gi fields; in our simulations, we have used a position-dependent L
(just as we did with atomic mobility in Eq. (7)):
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