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a b s t r a c t

The thermomechanical behavior and associated microstructure evolution of MnNi shape memory alloys
(SMAs) are studied via two-dimensional phase-field simulations. Simulations with complex geometries
and boundary conditions are realized by using finite element method. Shear-related surface relief, deter-
mined by the combination of Bain strain and crystal rotation, was observed. In the process of pseudoe-
lastic bending, large bending degree was realized by formation of triangular martensitic domains, and
the elastic strain energy did not apparently increase. The coupling strength of a SMA pipe coupling
was greatly influenced by the proceeding of the reverse transformation upon heating. It was found that
large shape change of SMAs was realized by the transition between different crystal structures, this tran-
sition was driven by the free energy difference between the structures, and the stress plateau during a
pseudoelastic cycle was related to the thermodynamic equilibrium state of austenite–martensite
interface.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Shape memory alloys (SMAs) are well-known functional
materials because of their pseudoelasticity and shape memory
effect [1–4], which stem from the thermoelastic structural
transformation between a high-symmetry austenite phase and a
low-symmetry martensite phase [5]. This transformation can be
induced by temperature or stress, thus SMA shows a strong ther-
momechanical coupling [6]. Based on this coupling, various engi-
neering applications have been realized, and can be divided into
four categories: free recovery, constrained recovery, work produc-
tion (actuators) and superelasticity [7]. The origin and mechanism
of shape memory are well understood, but many of the engineering
aspects are not [7]. Numerical simulation is an effective approach
to investigate these issues.

Phase-field simulations have been widely applied to investigate
the structural transformation of SMAs [8]. Falk [9] proposed a phe-
nomenological model, based on Landau’s theory. In this model the
free energy density is a polynomial in terms of strain components,
and the stress is obtained by derivative of the free energy with
respect to strain. In the simulations based on this model, the evo-
lution of strain field is governed by a time-dependent Ginzburg-
Landau (TDGL) equation, and the components of the strain tensor

are related to each other by the elastic compatibility relations.
Jacobs et al. [10] studied the cubic-tetragonal transformation, the
obtained stable and transient patterns were also observed in
experiment. Ahluwalia et al. [11] simulated the hexagonal-
orthorhombic transformation. They also simulated the mechanical
response and microstructure evolution of FePd SMAs during
dynamic strain loading [12]. Dhote et al. [13] simulated the for-
ward and reverse cubic-tetragonal transformation. On the other
hand, Wang and Khachaturyan [14] proposed a phase-field model
of martensitic transformation based on the TDGL phase transition
theory integrated with the Khachaturyan-Shatalov (KS) microelas-
ticity theory. In this kind of model, the free energy is a Landau
polynomial in terms of order parameters, and the transformation
strain couples with order parameters by a linear or quadratic term.
The TDGL equation is used to govern the evolution of order param-
eter. The elastic strain energy is obtained via the KS theory. This
model has been widely applied to study the microstructure evolu-
tion of SMAs. Jin et al. [15] studied the cubic-trigonal transforma-
tion of AuCd alloys in polycrystals. Man et al. [16] studied the
microstructure evolution of MnCu alloys under temperature field.
Gao et al. [17] simulated the pattern formation during cubic-
orthorhombic transformation in NiTi alloys.

For the phase-field model proposed by Wang and Khachatu-
ryan, periodic boundary condition is required, thus the surface
effect (e.g. surface relief) is not taken into account. Complex defor-
mation process (e.g. bending of beam) could not be simulated as
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well. Furthermore, the microstructure evolution in complex-
shaped materials (e.g. ring-shaped SMA coupling) is difficult to
be simulated. Recently, finite element method has been applied
to phase-field simulations [18–20], the elastic strain energy is
obtained by solving the mechanical equilibrium equations, instead
of the KS microelasticity approach in the Fourier space. Therefore,
problems with complex boundary conditions can be investigated.
Mamivand et al. [21] studied the formation of a surface relief
induced by the tetragonal to monoclinic transformation. They also
simulated the shape memory effect and pseudoelasticity behavior
in zirconia [22]. She et al. [23] studied the effect of surface energy
on the martensitic transformation with free boundary condition.
Paranjape et al. [24] simulated the interaction between phase
transformation and plasticity in SMAs. Javanbkht and Barati [25]
studied the surface tension effect on the martensitic transforma-
tion, and it was found that the surface tension can suppress
nucleation.

Nevertheless, phase-field simulations focusing on the thermo-
mechanical behavior of SMAs can be rarely found in literature. In
fact, the micromechanism of the thermomechanical behavior has
not been well understood, e.g. the correspondence between
microstructure evolution and stress–strain curve during superelas-
tic bending, and the microstructure evolution of SMA pipe coupling
during the application process.

In the present work, finite element simulations of phase-field
model are applied to study the thermomechanical behavior and
microstructure evolution of MnNi SMAs. Owing to the ability of
solving problem with complex boundary condition by using finite
element method, the thermomechanical response during the engi-
neering application process is simulated and the micromechanism
is discussed in this paper, which have hardly been investigated in
literature. Because three-dimensional (3D) simulations with
relatively large number of meshes are beyond our computational
ability, only 2D simulations were performed. In 2D space, the
square-to-rectangle transformation was simulated, including the
thermally induced transformation, the pseudoelastic behaviors
during tensile and bending tests, the shape memory effects with
free and constraint recoveries, and the strain-temperature rela-
tionship under constant stress.

2. Phase-field model

The phase-field model used in this study is based on the model
proposed by Wang and Khachaturyan [14], and the simulation
method is based on that proposed by Mamivand et al. [26]. Order
parameter (g) is used to describe the microstructure field, and
the temporal evolution of g is governed by the TDGL equation:

@g
@t

¼ �L
dG
dg

ð1Þ

where L is the kinetic parameter. G is the total free energy of the
system, which can be defined as the summation of the chemical free
energy (Gch), the gradient energy (Ggr), and the elastic strain energy
(Gel):

G ¼ Gch þ Ggr þ Gel ð2Þ
For the square-to-rectangle transformation, there are two Bain

variants. Actually, one order parameter is adequate to express
two variants, i.e., g = 0, g = 1 and g = �1 correspond to austenite,
variant-1 and variant-2, respectively. To satisfy the symmetry
requirement of free energy, the Landau 2-4-6 polynomial is applied
to express the chemical free energy [27]:
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where the coefficients are A = 32DG⁄, B = 4A � 12DGm and
C = 3A � 12DGm. DGm is the thermodynamic driving force, and
DG⁄ is the energy barrier.

The gradient energy is expressed as:

Ggr ¼
Z
V

b
2
ðrgÞ2dV ð4Þ

where b is the gradient energy coefficient, and r is the differential
operator. It is assumed that the interfacial energy is isotropic, thus a
single and constant gradient energy coefficient is used.

The elastic strain energy can be expressed as:

Gel ¼
Z
V
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where Cijkl is the elastic coefficient tensor. The elastic strain tensor
(eelij ) is defined as the difference between the total strain (etij) and the

stress-free transformation strain (e0ij):

eelij ¼ etij � e0ij ð6Þ
A first order coupling between transformation strain and order

parameter is assumed, based on the non-linear free energy descrip-
tion of SMAs [9,27], as:

e0ij ¼ e00ij g ð7Þ
where e00ij is the transformation strain corresponding to g = 1, and
can be given as:

e00ij ¼ e3 0
0 e1

� �
ð8Þ

where e1 ¼ ðap � amÞ=am and e3 ¼ ðcp � amÞ=am. am, ap and cp are the
crystal lattice parameters of the matrix and product phases, respec-
tively. The total strain is expressed as:

etij ¼
1
2

@ui

@rj
þ @uj

@ri
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where ui is the displacement vector. The elastic stress is evaluated
using Hooke’s law:

rij ¼ Cijkleelkl ð10Þ
According to the above equations, the detailed expression

of Eq. (1) is given by [26]:
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The displacement is obtained by solving the equation of

mechanical equilibrium, as:
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COMSOL Multiphysics [28] based on the finite element method
is applied to solve the partial differential equations (PDEs). The
dependent variables contain the order parameter (g) and the dis-
placements (ui). The time-dependent PDE of g (i.e. Eq. (11)) was
solved by the implicit backward differentiation formulas, and the
gradient term was obtained by using finite-difference approxima-
tion. Calculation of displacements, i.e. solving the stationary PDE,
Eq. (13), was performed for every step of time. In order to guaran-
tee the convergence, an adaptive time step algorithm was imple-
mented, and the maximum time step was set to be 0.2 s. The
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