
Effective elastic constants of hexagonal array of soft fibers
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a b s t r a c t

Analytical formulae for the effective elastic constants of 2D composites with soft unidirectional fibers
arranged in the hexagonal array are obtained for arbitrary concentration of fibers, from dilute case to per-
colation. It is supposed that every section of composites perpendicular to fibers is the hexagonal array
with circular holes or soft inclusions. First, a polynomial approximation in concentration is obtained
by application of functional equations. Further, an asymptotic analysis is applied to the obtained polyno-
mial with using of the known asymptotic formulae in percolation regime. Finally, the formula for the
effective shear modulus is suggested. It can be applied to the typical matrices made from ceramics, met-
als and polymers, and to other materials as well, e.g., for resin and thallium.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Accurate and consistent evaluation of the effective properties of
composites and porous media is one of the fundamental tasks of
applied mathematics and engineering. Experimental methods
require advanced technological methods in order to obtain accu-
rate results [1]. First of all this concerns the transverse shear mod-
ulus of fibrous composites. Therefore, theoretical investigations by
means of analytical and numerical techniques are paramount. In
particular, they are important for the regime with high-
concentration of fibers. Solution to boundary value problems for
a multiply connected domain in a class of periodic functions leads
to theoretical evaluation of the effective properties. In the present
paper, we restrict ourselves to plane strain elastic problems with
circular holes that corresponds to fibrous composites with very
soft fibers. Such elastic problems have application in poroelasticity,
in particular, in biomechanics [2] in order to estimate a stress-
strain state of reconstruction system bone-implant. Approximate
and analytical formulae for porous media are applied in geophysics
[3,4]. Applications of fiber composites in industry is outlined in [5].
Aluminium bricks with cylindrical holes were widespread in con-
structions of engines and it is still used in certain applications
where it remains advantageous.

The general potential theory of mathematical physics yields
methods of integral equation to numerically solve various bound-
ary value problems. Integral equations for plane elastic problems
were constructed by Muskhelishvili [6], first, extended to doubly
periodic problems in [7] and developed in [8–10]. The obtained
results were applied to computations of the effective properties
of the elastic media. Integral equations are efficient for the numer-
ical investigation of a non-dilute composites when interactions of
inclusions have to be taken into account.

Approximate analytical formulae were recently obtained for bi-
Laplace’s equation which describes elastic materials [11] for a cir-
cular multiply connected domain. It is worth noting that many
efforts were applied to get analytical formulae. The results were
obtained for two extremal regimes when the concentration of
inclusions f is low [12–15] and near the percolation threshold
[12,15]. In the present paper, we apply the method of functional
equations [16,17,11] to elastic plane problems for the regular
hexagonal (triangular) array of holes. In this particular, but impor-
tant in application case, we show how to deduce high order con-
centration formulae for general random 2D composites.

The second step of investigations is asymptotic analysis to
establish analytic formula for the effective shear modulus near
the percolation threshold and to obtain a universal formula valid
for all f. For an array of circular holes on the cites the hexagonal lat-
tice effective shear modulus is expected to decay in the vicinity of
f c ¼ p

12 � 0:9069 as a power-law,

le ’ Aðf c � f ÞT ;
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with positive critical index T . The phase-interchange theorem [15],
does not hold in the case of shear modulus for such array of holes,
i.e., it should be two different values for the critical index for holes
and inclusions, but does hold for the bulk-modulus [15].

For the antiplane shear problem the elastic displacements are
zero in the plane but are non-zero in the direction perpendicular
to the plane, and in the isotropic case only scalar elastic shear mod-
ulus l participates. The 2D dielectric constant (or electrical con-
ductivity) problem is rigorously analogous to the antiplane shear
elasticity problem [15,18], so that all results concerning effective
properties discussed above can be applied to the effective shear
modulus l� as a function of contrast parameter ql ¼ l1�l

l1þl
, and con-

centration of the inclusions f. Here, l1 and l stand for the shear
modulus of the inclusions and matrix, respectively.

De Gennes [19] conjectured that in the vicinity of percolation
threshold, such properties as conductance of a resistor network
and the effective elastic modulus for one-component elastic dis-
placement of point-like monomers, behave analogously. I.e., in
antiplane shear an effective elastic modulus for perfectly rigid
inclusions should diverge as

l�
e � ðf c � f Þ�S

in the vicinity of the critical concentration f c . According to [19], the
critical index S for the elastic modulus is equal to the superconduc-
tivity index s. By analogy we expect S ’ 1:3 in random case, and
S ¼ 1

2 for regular lattice arrangements of inclusions. In case of plane
strain elasticity such quantity as bulk modulus behaves similarly
and with the same critical index at least in the regular case [15],
and will be considered elsewhere.

Another interesting exact result is independence of the effective
Young modulus of a 2D sheet containing circular holes on the Pois-
son coefficient of the matrix [20,21]. Although it does not hold for
rigid or other inclusions, actual dependence of the Poisson ratio m is
rather weak.

The holes are punched in the matrix with different elastic prop-
erties. Plane strain elastic problem is considered for such compos-
ite and the effective elastic modulus is obtained in the form of
power series in the inclusions concentration and elastic constants
for holes and matrix.

For holes the shear modulus l1 ¼ 0 and the Poisson ratio m1 ¼ 0.
We construct an expansion for the effective shear modulus avail-

able up to Oðf 14Þ inclusively.

2. Method of functional equations for local fields

We begin our study with a finite number n of inclusions on the
infinite plane. This number n is given in a symbolic form with an
implicit purpose to pass to the limit n ! 1 later. The shear modu-
lus of inclusions is also arbitrary taken as l1 to pass to the limit
l1 ! 0 in the final formulae. Introduce the complex variable
z ¼ xþ iy where i denotes the imaginary unit. Let inclusions be
disks Dk ¼ z 2 C : z� akj j < rf g ðk ¼ 1;2; . . . ;nÞ in the extended

complex plane bC ¼ C [ f1g. Denote @Dk :¼ t 2 C : t � akj j ¼ rf g
where the curves @Dk are oriented in clockwise sense. Let D be

the complement of [n
k¼1ðDk [ @DkÞ to bC (see Fig. 1).

Let the uniform shear stress are applied at infinity

r1
xx ¼ r1

yy ¼ 0; r1
xy ¼ r1

yx ¼ 1: ð1Þ

The component of the stress tensor can be determined by the
Kolosov-Muskhelishvili formulae [6]

rxx þ ryy ¼
4Re u0

kðzÞ; z 2 Dk;

4Re u0ðzÞ; z 2 D;

�
ð2Þ

rxx � ryy þ 2irxy ¼
�2 zu00

kðzÞ þ w0
kðzÞ

h i
; z 2 Dk;

�2 zu00ðzÞ þ w0
0ðzÞ

h i
; z 2 D;

8><>: ð3Þ

where Re denotes the real part and the bar the complex conjuga-
tion. The component of the deformation tensor have the form

�xx þ �yy ¼
j1�1
l1

Reu0
kðzÞ; z 2 Dk;

j�1
l Reu0ðzÞ; z 2 D;

(
ð4Þ

�xx � �yy þ 2i�xy ¼
� 1

l1
Re zu00

kðzÞ þ w0
kðzÞ

� �
; z 2 Dk;

� 1
lRe zu00ðzÞ þ w0

0ðzÞ
� �

; z 2 D;

(
ð5Þ

where j ¼ 3�m
1þm ; m is the 2D Poisson ratio [22]. The same notation is

used for j1. We have w0ðzÞ ¼ izþ wðzÞ. The functions uðzÞ;wðzÞ are
analytic in D, twice differentiable in D [ @D and bounded at infinity.
The functions ukðzÞ and wkðzÞ are analytic in Dk and twice differen-
tiable in the closures of the considered domains.

The perfect bonding at the matrix-inclusion interface can be
expressed by two conditions [6]

ukðtÞ þ tu0
kðtÞ þ wkðtÞ ¼ uðtÞ þ tu0ðtÞ þ w0ðtÞ; ð6Þ

j1ukðtÞ � tu0
kðtÞ � wkðtÞ ¼

l1

l
juðtÞ � tu0ðtÞ � w0ðtÞ
� �

: ð7Þ

Introduce the new unknown functions

UkðzÞ ¼
r2

z� ak
þ ak

� �
u0

kðzÞ þ wkðzÞ; z� akj j 6 r;

analytic in Dk except the point ak where its principal part has the

form r2 z� akð Þ�1u0
kðakÞ. Introduce the inversion with respect to

the circle @Dk

z�kð Þ ¼ r2 z� akð Þ�1 þ ak:

The problem (6), (7) was reduced in [16] (see Eqs. (5.6.11) and
(5.6.16) in Chapter 5), [23] to the system of functional equations

l1

l
þ j1

� �
ukðzÞ ¼

l1

l
� 1

� �X
m–k

Umðz�mð ÞÞ � z� amð Þu0
mðamÞ

h i
� l1

l
� 1

� �
u0

kðakÞ z� akð Þ þ p0; z� akj j 6 r;

ð8Þ

D
Dk

Fig. 1. Section of fibrous composite.
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