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a b s t r a c t

Solving Peierls-Boltzmann transport equation with interatomic force constants (IFCs) from first-
principles calculations has been a widely used method for predicting lattice thermal conductivity of
three-dimensional materials. With the increasing research interests in two-dimensional materials, this
method is directly applied to them but different works show quite different results. In this work, classical
potential was used to investigate the effect of the accuracy of IFCs on the predicted thermal conductivity.
Inaccuracies were introduced to the third-order IFCs by generating errors in the input forces. When the
force error lies in the typical value of first-principles calculations, the calculated thermal conductivity
would be quite different from the benchmark result. It is found that imposing translational invariance
conditions cannot always guarantee a better thermal conductivity result. It is also shown that
Grüneisen parameters cannot be used as a necessary and sufficient criterion for the accuracy of third-
order IFCs in the aspect of predicting thermal conductivity.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

In crystalline semiconductors and insulators, phonons (i.e. lat-
tice vibrations) are the major heat carriers, so the thermal conduc-
tivity can be calculated with the knowledge of phonon properties.
Recently there are growing interests to predict the lattice thermal
conductivity by solving Peierls-Boltzmann transport equation
(PBTE), either under single mode relaxation time approximation
(SMRTA) or with full iterative solution [1,2]. With interatomic force
constants (IFCs) extracted from first-principles calculations as the
input, this method has been widely used to calculate the thermal
conductivity of three-dimensional (3D) materials [3–26]. The good
agreement between these calculated values and measured experi-
mental data proves its accuracy and reliability [3–21].

The discovery of ultrahigh thermal conductivity of graphene
[27] has stimulated a growing research interest in the thermal con-
ductivity of two-dimensional (2D) materials. The first-principles
PBTE method for predicting thermal conductivity has been directly
applied to 2D materials like graphene [28–31], silicene [32–35],
phosphorene [36–40], MoS2 [41–43], borophene [44], etc. How-
ever, previous calculations show quite different results in different
works. For example, the predicted thermal conductivity for black

phosphorene from SMRTA [36–40] at room temperature along
armchair direction varies a lot from 5.46 to 33W/mK, and the
result along zigzag direction spans a rather large range between
15.33 and 83.5 W/mK. Similar discrepancy is also observed in the
case of MoS2, whose thermal conductivity at room temperature
was predicted from SMRTA to be 83 W/mK by Li et al. [41] as well
as Gu and Yang [42]. In comparison, Yan et al. [43] got a result of
35.5 W/mK with the same method. The lack of consistency in the
predicted thermal conductivity may arise from using iterative
method instead of SMRTA [30,31], imposing translational invari-
ance conditions to third-order IFCs [15,35], different exchange-
correlation functionals used in first-principles calculations [45],
enforcing a quadratic branch in the dispersion of 2D materials
[44], etc. In materials where resistive Umklapp scattering processes
dominate in the phonon-phonon scattering, both SMRTA and iter-
ative method should give similar results [1,2]. For graphene, itera-
tive method yields a much larger thermal conductivity value than
SMRTA because the momentum-conserving normal scattering pro-
cesses also play an important role in phonon transport [30,31],
which has been explained by the hydrodynamic phonon transport
at room temperature [46,47]. Regarding the translational invari-
ance conditions (i.e. acoustic sum rules), Lindsay et al. [15] demon-
strated that imposing it to third-order IFCs would play an
important role in determining thermal conductivity. Our previous
results for silicene also showed its importance [32,35]. Transla-
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tional invariance conditions will affect the calculated phonon scat-
tering rate, especially for long-wavelength phonons near the Bril-
louin zone center. Concerning the exchange-correlation
functionals, Jain and McGaughey [45] studied their effects on pre-
dicting the thermal conductivity of crystalline silicon from first-
principles calculations. Different exchange-correlation functionals
could lead to an under-prediction or over-prediction within 20%
of the experimental value. Recently, Carrete et al. [44] showed that
the second-order IFCs directly extracted from first-principles cal-
culations might yield problematic phonon dispersion curve for
2D materials. The dispersion curve of unstrained 2D materials
can be demonstrated to contain a quadratic branch near Brillouin
zone center [48] but the second-order IFCs directly extracted from
first-principles calculations would yield linear ones. By generating
physically sound IFCs, they showed that the thermal conductivity
result could be quite different from the value calculated with the
raw IFCs from first-principles calculations [44].

Previous discussions explained part of the inconsistency in the
predicted thermal conductivity of 2D materials from first-
principles calculations. However, with all the above mentioned
reasons considered, based on our own testing (unpublished), dis-
crepancy in predicted thermal conductivity could still exist for
some 2D materials. As will be shown later, the accuracy of third-
order IFCs also plays an important role on the predicted thermal
conductivity. For first-principles calculations, the accuracy might
be affected by energy cutoff, k-point grid, reciprocal space projec-
tion technique, aliasing errors, discretization errors, etc. [49]. For
example, the attainable fractional precision [49] in forces using
VASP is 10�4. Currently, the most widely used method to extract
IFCs generally takes forces as the input parameter, and uses
finite-difference method to calculate the IFCs. The raw IFCs from
first-principles calculations often do not satisfy the translational
invariance conditions, so these conditions are artificially imposed
by adding small compensation to each term. All these processes
will induce additional uncertainty to the IFCs, especially the
third-order IFCs.

In this work, we will discuss how the accuracy of IFCs could
affect the predicted lattice thermal conductivity values. Due to
the large uncertainty in first-principles calculations, we used clas-
sical potential to do such an investigation. Classical potential has
the advantage that it has an explicit analytical form, so that the
error only comes from numerical computation and can be reduced
to a negligible amount to get an ‘‘accurate” thermal conductivity
result as benchmark. Based on the benchmark case from classical
potential, inaccuracies are artificially introduced to third-order
IFCs and effects of these inaccuracies on the predicted thermal con-
ductivity are investigated. SMRTA is used to calculate thermal con-
ductivity due to the computational cost consideration and also
because phonon relaxation time is well defined with this approach.
Previously, Grüneisen parameters have been used as a simple test
for the accuracy of the third-order IFCs [28]. The applicability of
this criterion is also examined. Our result will shed some light on
predicting thermal conductivity from first-principles calculations.
In what follows, we describe the simulation methods and details
in Section 2. Simulation results for silicon, graphene, and silicene
are shown in Section 3. Discussions about our results and first-
principles calculations are presented in Section 4. Our conclusions
are summarized in Section 5.

2. Simulation methods and details

2.1. Single mode relaxation time approximation method

For a periodic crystal structure under equilibrium state, the
potential energy can be expanded as the Taylor series [50,51]
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where U0 is the equilibrium potential energy. uai , u
b
j , and uck are the

displacements of i-th atom in a direction, j-th atom in b direction,
and k-th atom in c direction, respectively. Uab

ij is the second-order

IFC and Wabc
ijk is the third-order IFC. Even higher-order IFCs are

neglected in this equation. Physically correct second-order and
third-order IFCs have to satisfy the point/space group symmetry
relations, translational invariance conditions, and rotational invari-
ance conditions, which are shown in the Appendix A. Comparison of
Grüneisen parameters from second-order and third-order IFCs has
been used as a simple test for the accuracy of third-order IFCs.
The calculation of Grüneisen parameters and the definition of rela-
tive difference are also shown in the Appendix A. The force acting
on each atom is F i ¼ �riU and for a structure under equilibrium
state, F i ¼ 0. With the IFCs as the input, the thermal conductivity
of semiconducting or insulating materials can be calculated from
SMRTA with the following equation
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where k denotes different phonon modes that can be distinguished
by wave vector q and phonon branch m. cph;k is the volumetric pho-

non specific heat. vak and v
b
k are the phonon group velocities in a and

b direction, respectively. cph;k and vk can be calculated with the
second-order IFCs as the input [52]. sk is the phonon relaxation
time, i.e. the inverse of phonon scattering rate. In our calculation
of sk, only phonon-phonon scattering is considered. More specifi-
cally, only three-phonon scattering is considered. sk can be calcu-
lated with both second-order and third-order IFCs as the input.
For more details about the method we refer the reader to Refs.
[52–54].

2.2. Simulation details

The second-order and third-order IFCs as the input for SMRTA
method were calculated from classical potential. Careful tests were
carried out to reduce the numerical error. GULP package [55] was
first used to optimize the primitive unit cell of silicon, graphene,
or silicene. After that, a supercell was constructed and the lattice
constant was re-optimized with LAMMPS package [56]. In this
re-optimization process, the bisection method was used to find
the lattice constant corresponding to the lowest energy state.
Forces acting on each atom were computed from LAMMPS through
the analytical derivatives of the potential function [57], which
would be free of truncation error coming from numerical differen-
tiation. As the input for calculating IFCs, forces were output with
sixteen significant digits to retain accuracy. In order to reduce
the truncation error, fourth order accuracy method was used
instead of central difference method (see the Appendix A for the
details) to compute the second-order and third-order IFCs with
our own in-house code and revised THIRDORDER.PY [54], respec-
tively. These third-order IFCs were not modified by adding small
compensation because they already satisfied translational invari-
ance conditions to a reasonable extent. Point/Space group symme-
try conditions were enforced and utilized to reduce computational
cost. These IFCs were then used to obtain the benchmark thermal
conductivity. In fact, modified third-order IFCs that have transla-
tional invariance conditions imposed were also generated for the
purpose of comparison. Inaccuracies in the third-order IFCs were
simulated by either truncating digits or adding random numbers
to the forces. The force errors were put in the irreducible set of IFCs
before point/space group symmetry operations in order to make
sure that the full set satisfies symmetry conditions. For truncation
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