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a b s t r a c t

We study the electron transport in metallic carbon nanotubes (CNTs) with realistic defects of different
types. We focus on large CNTs with many defects in the mesoscopic range. In a recent paper we demon-
strated that the electronic transport in those defective CNTs is in the regime of strong localization. We
verify by quantum transport simulations that the localization length of CNTs with defects of mixed types
can be related to the localization lengths of CNTs with identical defects by taking the weighted harmonic
average. Secondly, we show how to use this result to estimate the conductance of arbitrary defective
CNTs, avoiding time consuming transport calculations.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) offer a large variety of properties [1–
3], which can be very useful for future electronic devices. One of
them is the very high conductance in the ballistic regime [4] that
makes CNTs attractive for metallic interconnect systems [5–8].
Although research on CNTs has continued for many years since
their discovery in 1991 and clean CNTs approaching the theoretical
conductance limit can be produced under well-defined laboratory
conditions [9], current CNT-based devices at the wafer level which
means a fast and reproducible fabrication are still not reaching that
limit. One reason is the strong impact of defects [10,11], which
cannot be avoided during production processes at the wafer level

[12–16], whether physically introduced like vacancies or chemi-
cally initiated like functionalizations. They can, e.g., be caused by
ion collisions within a gas atmosphere, by electron beam treat-
ments, or within organic solutions, which are necessary steps for
the fabrication of devices with difficult three dimensional geome-
tries. Thus, understanding the influence of these defects on elec-
tronic transport properties of CNTs is a necessary step towards
their integration into microelectronic devices.

The present work approaches this subject at the theoretical
level. On the one hand, the size of such mesoscopic systems is of
the order of hundred thousand atoms, and on the other hand, a sta-
tistical description with large ensembles has to be considered. This
is very time-consuming despite the availability of high perfor-
mance computer resources and good scaling low-level methods.

In the past, most theoretical work in the field of quantum trans-
port simulations focused on the properties of single selected CNTs,
like it was done for vacancies [17–21], substitutional atoms [22,23]
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and functionalizations [23–27]. For this purpose, different elec-
tronic structure methods were addressed, from tight binding (e.g.
[22]) to density functional theory (e.g. [18,23]). These investiga-
tions showed that the conductance depends exponentially on the
CNT length, what was also verified by experiments [13]. This is
an indication of the strong localization regime, which is also pre-
sent in case of random Anderson disorder [28,29]. But this regime
does not only exist in CNTs. Also other materials can exhibit
Anderson disorder, e.g. silicon nanowires [30], showing that strong
localization is an interesting and important transport regime in
quasi-one-dimensional structures.

Beyond the properties of single selected CNTs, a further descrip-
tion and quantification of the strong localization regime for differ-
ent CNTs is necessary. Flores began a systematic study by
calculating the localization length for three metallic armchair CNTs
[19]. In a previous investigation [31], we continued these calcula-
tions for more CNTs to determine the diameter dependence.
Therein, we discussed CNTs with one type of defect. In the follow-
ing, we extend this work by calculating electronic transport prop-
erties of defective CNTs with defects of different types within one
CNT. Bringing all results together, we develop and explain a model
for estimating the conductance of metallic CNTs with arbitrary
diameter and an arbitrary number of different types of defects.

2. Theoretical framework

Electronic transport through mesoscopic systems can be
described by quantum transport theory, which is done here in
the equilibrium limit [32]. The conductance formula in the limit
of a small bias was introduced by Landauer and Büttiker [33]:

G ¼ �G0

Z 1

�1
T ðEÞdf ðEÞ

dE
dE: ð1Þ

G0 ¼ 2e2=h is the conductance quantum, T ðEÞ the transmission
function, and f ðEÞ the Fermi distribution, where the effect of tem-
perature is included.

The transmission function can be calculated via the Schrödinger
equation in a matrix representation and its Green’s function. For
this purpose, the whole (infinite) CNT is treated as a device. That
means, it is divided into three main parts: the (finite) central
region C, containing all the defects, and two (half infinite) elec-
trodes L and R, as shown in Fig. 1(a). Each part is described by
Hamiltonian matricesHL/HC/HR and the coupling by similar matri-
ces sLC/sCR. The coupling sLR can be neglected if the distance
between the electrodes is large enough. The electronic properties
are calculated via the Green’s function of the central region

GC ¼ ðEþ igÞS � HC � RL � RR½ ��1
: ð2Þ

RL ¼ sCLGLsLC and RR ¼ sCRGRsRC are the self-energy matrices, which
lead to an energetic shift due to the coupling to the electrodes. The
Green’s functions of the electrodes GL=R themselves can be calcu-
lated with the renormalization decimation algorithm (RDA), which
is a fast iteration process [34,35]. g is a small value for numerical
stability, which shifts the singularities from the real axis into the
complex plane.1 S is the overlap matrix, which is present in cases
where the representation is done in a non-orthogonal basis. Alto-
gether, this can be used to obtain the transmission function

T ðEÞ ¼ Tr CRGCCLGy
C

� �
: ð3Þ

CL=R ¼ iðRL=R � Ry
L=RÞ are broadening matrices, which lead to an

energetic broadening of each state due to the coupling to the
electrodes.

In the following we want to treat CNTs of mesoscopic lengths
with more than hundred thousand atoms in the defective central
region, where the direct inversion (2) is too time-consuming. For-
tunately, when using a representation with localized basis func-
tions, HC is block-tridiagonal. The central region of our device
can be subdivided into M parts, where only neighbored parts are
directly coupled, as shown in Fig. 1(b). This simplifies (3) to

T ðEÞ ¼ Tr C0
RGM1C

0
LG

y
M1

� �
: ð4Þ

GM1 is the lower left block of GC. Its dimension is a factor M smaller.
In the same way, C0

L (C0
R) is the upper left (lower right) block of

CL (CR). With the usage of the recursive Green’s function formalism
(RGF) [36], GM1 can be calculated very efficiently within linearly
scaling time t ¼ OðMÞ, which makes it possible at all to compute
electronic transport properties of mesoscopic CNTs. For this pur-
pose, narrowing the cells in Fig. 1(b) lowers the computation time,
which has to be taken into account when choosing these cells.

The following computations are performed neglecting phonon
effects. In the limit of a small bias, optical phonons have short
coherence lengths of 180 nm [37], but also high energies above
the thermal fluctuations. They are not excitable. Acoustic phonons
have small energies of the order of thermal fluctuations and can be
excited. But their coherence length of 2400 nm is much larger.
Therefore, inelastic scattering is not dominant for systems shorter
than this length. Beyond the following study, dephasing due to
phonons can be included phenomenologically with the Büttiker
probe model [38,39]. Here, the electron-phonon coupling strength
is a parameter, which has to be assumed or calculated separately.
An additional self-consistency iteration cycle is necessary, raising
the computation time. E.g. the conductance of disordered graphene
has been determined in this way [39]. Ab initio calculations of pho-
non modes and their influence on electron transport can also be
done directly [40,41], but are even more challenging.

3. Modeling details

For the transport calculation, the electronic structure is
described by a density-functional based tight binding model
(DFTB) [42,43]. We use the 3ob parameter set, which is a non-
orthogonal sp3 basis developed for organic molecules [44,45].
The cutoff for the distance-dependent TB hopping energy integrals
and the overlap integrals is chosen twice the carbon-carbon dis-
tance. Beyond this distance, the matrix entries are sufficiently
small to be neglected. This cutoff is also favorable, because it leads
to not more than third-nearest-neighbor interactions.

We analyze two different types of metallic CNTs, the (5,5)-CNT
and the (10,10)-CNT, in combination with three different defect
types (see Fig. 2): the unpassivated monovacancy (MV), where
one carbon atom is removed, the passivated monovacancy, where
one carbon atom is removed and the dangling bonds are saturated
with hydrogen, and the divacancy (DV), where two neighboring
carbon atoms are removed. The latter can be present in two differ-
ent orientations: perpendicular to the tube axis (DVperp) or diago-
nal (DVdiag). The length of the MV is equal to the length of the
unit cell (UC). The length of the MV3H and the DVperp is three times
the length of the UC. For the DVdiag two cases have to be consid-
ered. The length of the one shown in Fig. 2 is three times the length
of the UC. Another one, which is mirrored, has four times the
length of the UC, because half a UC has to be added at each side
to get correct connections to the rest of the CNT. Because the defect
cells (except the MV) are larger than the TB cutoff, they can be fur-
ther divided into smaller cells to speed up the RGF algorithm.

A realistic structure is obtained by performing a geometry opti-
mization of the ideal unit cell. Afterwards, the hydrogen atoms and
the whole DV defect cell are also optimized. Finite size effects are1 We use g ¼ 10�7 for calculating GC and g ¼ 10�4 for calculating GL=R via the RDA.
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