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a b s t r a c t

Elastic constants play critical roles in researching mechanical properties, but they are usually difficult to
be measured. While density functional theory (DFT) calculations provide a reliable method to meet this
challenge, the results contain inherent errors caused by various approximations. The data-driven
approach of machine learning also laid a foundation for predicting material properties. In order to
increase the accuracy of theoretical calculations results, in this paper we investigate using machine learn-
ing methods to both correct the elastic constants by DFT calculation, and to directly predict elastic con-
stants. The single-hidden layer feedforward neural network trained by back propagation algorithm
(SLFN), general regression neural network (GRNN) and support vector machine for regression (SVR) tech-
niques are employed to build regression models to correct the elastic constants by DFT calculation for
metal or metallic binary alloys. We also build regression models to predict the elastic constants of metal-
lic binary alloys with cubic crystal system rather than using DFT calculations. It has been demonstrated
that the elastic constants corrected by regression models has higher accuracy than those calculated by
DFT, and the elastic constants of binary alloys directly predicted by model using the outperformed
SLFN technique is prospective.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The density-functional theory (DFT) [1] provides an efficient
approach for materials design and microscopic mechanism analy-
sis from computing perspective. However, due to the inherent
approximations adopted in DFT, there is a deviation between a
DFT prediction and the corresponding experimental value. Despite
the DFT prediction suffer from lack of precision, the calculation
results also could capture the essence of the physics, such as elec-
tronic structure, behavior of lattice vibrations, optical property,
magnetic moment, anisotropy elastic constants, and so on. In order
to reduce the deviation and increase the accuracy of DFT calcula-
tions, in this study, an approach of using DFT calculation together
machine learning is used to minimize the gap between theoretical
values and the experimental measurements. Apart from improving
DFT calculation results, the machine learning is also used to predict
anisotropy elastic constant of a binary alloy by using relevant data
of its comprising pure elements.

Material properties greatly depend on chemical composition
and crystal structures. For the same property, materials with dif-
ferent elements, composition and structure often show different
values. It means that the property value of a material has relation-
ships with its comprising elements, composition and structure.
Regression techniques have laid a foundation for modeling
structure-property relationships in material informatics [2–4].
These methods take a set of known material structure information
along with some properties (e.g. strength, band gap, melting tem-
perature, etc.) as inputs, and output the predicted value. In the past
decade, machine learning methods have been successfully applied
in the field of material informatics to predict material properties
and to improve the accuracy of DFT calculations. For example, in
2004, Guanhua Chen applied neural networks to improve the accu-
racy of DFT calculation of heat of formation of 180 organic mole-
cules, and the error of the corrected heats of formation were
dramatically reduced [5]. In 2009, Ozerdem and Kolukisa applied
artificial neural network to predict the mechanical properties of
Cu–Sn–Pb–Zn–Ni cast alloys using chemical compositions [6]. In
2016, Balachandran used Gaussian Process Model (GPM) and SVR
to train a model that predicts elastic properties in terms of elemen-
tary orbital radii of the individual components of compound mate-
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rials [7], and the initial training data they used are calculated by
DFT [8]. In 2016, Ting Gao used general regression neural network
(GRNN) to correct the DFT non-covalent interactions calculations
based on the benchmark databases S22, S66 and X40 [9]. It has
shown that the data-driven machine learning methods can well
capture the structure-composition-property relationship, and used
to reduce calculation errors caused by inherent approximations in
the level of theory and limited basis sets.

In this study, we investigate using machine learning to both
correct the elastic constants value by DFT, and directly predict
the elastic constants for binary alloys. In order to get prediction
value of elastic constants with higher accuracy for metal elements
and binary alloys, we use machine learning to develop a model by
using dataset of DFT calculation of elastic constants, dataset com-
ing from crystal structure information, and composition informa-
tion to improve the accuracy of DFT calculation elastic constants.
That is to say, we take composition information, DFT calculations
of volume, energy, and elastic constants as inputs for regression
model, and the model outputs the corrected elastic constants of
DFT calculation with different DFT XC-functionals. In terms of
direct prediction of elastic constants for binary alloys, we build a
machine learning model using crystal structure information, com-
position information, and experimental elastic constants of its
comprising pure elements to predict the elastic constants of binary
alloys. It has been discovered that the model prediction values are
closer to the experimental values compared with DFT calculation
values.

The procedures of the proposed approach are described as fol-
lows: (1) We collect experimental data of elastic constants for 34
metal pure elements and 59 binary alloys from literatures, which
are used to tuning parameters of regression models, and use DFT
software package to produce simple physical properties (e.g. vol-
ume, energy) and elastic constants of these 93 materials with dif-
ferent input settings of DFT calculation; (2) We briefly introduce
three kinds of machine learning techniques, SLFN, GRNN and SVR
to build regression models, and describe the predictors of the
regression models; (3) Based on collected data set, the SLFN, GRNN
and SVR are used to construct models to correct DFT calculation
elastic constants of pure element metals and binary alloys. The
results by the three regression models are compared. (4) At last,
as a test case of predicting property straightaway rather than using
DFT, the elastic constants of binary alloys are predicted using
experimental elastic constants and crystal structure information
of its comprising pure elements.

The remainder of this paper is organized as follows. Section 2
describes the data preparation for using machine learning tech-
nique, and discusses three machine learning methods as well as
predictors for building regression model. The Section 3 focuses
on the analysis of regression and application performance of the
proposed approach. Section 4 is the conclusion.

2. Methods

2.1. Data preparation

The prediction models are built from a data set containing
experimental elastic constants and predictors for 34 pure element
metals and 59 binary alloys. The predictor values of physical prop-
erties, such as volume, energy and elastic constants are obtained
from DFT calculation. In the present work, DFT calculations are
performed by the VASP code [10,11]. The ion-electron interaction
is described by the projector-augmented wave (PAW) method.
The used XC functionals are depicted by the generalized gradient
approximation (GGA) parameterized by Perdew and Wang
(PW91), Perdew Burke Ernzerh (PBE), and Local Density Approxi-

mation (LDA). The applied plane-wave kinetic energy cut-off value
is the largest found among the recommendations for all species
involved in the calculation, increased by a factor of 1.3. The conver-
gence test of total number of k-points (KPT) in the irreducible Bril-
louin zone for all DFT calculation has been done in this paper, and
when the KPT is set to 21,000, the DFT calculation results for the
sample materials can reach a stable convergence state. So in our
work, the number of KPT is set to 21,000. The k-point mesh can
be generated using Monkhorst-Pack scheme according to the value
of KPT as well as the reciprocal lattice vector of the simulation cell
and the total number of the atoms in the simulation cell. The DFT
calculation and experimental elastic constants of these 93 materi-
als are list in the Appendix.

To get the predictor values, three kinds of DFT calculation types:
RELAX calculation, STATIC calculation, and ELASTIC CONSTNTS cal-
culation should be carried out. There are 3 sets of DFT calculation
parameters, and it needs to run 837 times of VASP code to get
physical properties value of predictors and elastic constants of
these 93 materials. The data extraction and data management for
all the calculations is also tedious. By using the high-throughput
DFT simulation engine and data management platform, namely
MatCloud [12], this research study is doable and workload is
greatly reduced. Among the elastic constants calculated by the
three types of pseudopotential PAW_PW91, PAW_PBE, PAW_LDA
for each material, we use the elastic constants with the minimum
error as predictor, and the values of other simple physical proper-
ties predictors are obtained from the DFT calculations with the
same pseudopotential as that used for ELASTIC CONSTANTS
calculation.

2.2. Machine learning methods

Regression is a useful machine learning technique [13] to con-
struct a model that predicts response variables from a set of inde-
pendent variables. Least Squares Regression (LSR) is a commonly
used method to estimate regression models. It can effectively
describe linear relationship between response variables and inde-
pendent variables. However, the prediction from LSR is not very
good in nonlinear regression applications [14]. The general regres-
sion neural network (GRNN), SLBPFN and SVR are nonlinear regres-
sion methods that show good prediction ability in physical and
material study fields [15,16]. These three learning algorithm are
stated as follows.

2.2.1. Single-hidden layer feedforward neural network (SLFN)
SLFN has inherent learning and generalization abilities. It has

been used in a variety of applications successfully. SLFN learns
from examples, much like human beings. A SLFN with a non-
polynomial activation function can approximate any continuous
function to any degree accuracy [17]. A standard SLFN with at most
N hidden neurons and with any bounded nonlinear activation
function which has a limit at one infinity can learn N distinct sam-
ples with zero error [18].

Consider a data set of N different data D = (xi, ti), where
xi ¼ ½xi1; xi2; . . . ; xio�T 2 Ro, ti ¼ ½ti1; ti2; . . . ; tim� 2 Rm, xi and ti denote
a vector of O predictor variables and M response variables. The
mathematical model of SLFN with �N hidden nets can be described
as follow
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T denotes the weights that con-

nect the i-th hidden net and the output nets, function f 2ðxÞ is the

136 J. Wang et al. / Computational Materials Science 138 (2017) 135–148



Download English Version:

https://daneshyari.com/en/article/5453140

Download Persian Version:

https://daneshyari.com/article/5453140

Daneshyari.com

https://daneshyari.com/en/article/5453140
https://daneshyari.com/article/5453140
https://daneshyari.com

