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a b s t r a c t

In Erdélyi and Schmitz (2012) a flexible concept for the computational description of the phase formation
and growth in solid state reactions was described. Unlike in other established approaches, it is not
required to predefine and trace phase boundaries by dividing surfaces or similar concepts. We show
how to extend the concept to the transition between linear to parabolic growth kinetics. Although no
interphase boundaries are predefined, it is nevertheless possible to correctly describe the impact of inter-
facial transport barriers. This allows a transparent modelling of the linear-parabolic transitions in reac-
tive diffusion.

� 2017 Published by Elsevier B.V.

1. Introduction

In established computational approaches to the diffusional pro-
cesses of phase separation or interreaction, it is common practice
to describe the appearing phase boundaries by some kind of divid-
ing interfaces. The fluxes to both sides of the interface are evalu-
ated in a dedicated manner to predict the migration of the
boundary and so to allow the book-keeping of its momentary posi-
tion, see e.g. [1] or [2]. In a recent work [3], we used an alternative
concept of simulating reactive diffusion that avoided the men-
tioned book-keeping of the interfaces. Based on the appropriate
thermodynamic driving forces, expressed by correct thermody-
namic factors of chemical potentials, the algorithm predicts the
phase transformations automatically, a concept that has been
already discussed earlier [4]. But in contrast to this earlier report,
now phase boundaries are not assigned to dividing interfaces any-
more, but are simply related to volume slabs revealing a composi-
tion inside the forbidden concentration range of the two-phase
regions. At first sight, this concept appears to be just a formal com-
putational trick. However, focusing on nanodevices, it may even
become the more realistic picture. A phase boundary cannot be
infinitely sharp but may have a thickness of about a nanometer
at least. So, the interface-related volume becomes significant in
comparison to the total volume of a nanodevice.

In this article we develop and demonstrate how to describe the
transition from linear to parabolic kinetics within the proposed
computational concept. In phenomenological understanding of
phase growth by solid state reaction, it is usually supposed that
transfer of atoms through phase boundaries is hindered by differ-
ent reasons. Whatever the reason is, extra potential barriers are
supposed to be present at the phase boundaries which slow down
the atomic transport [5,6]. Introduced as a concept of describing
the kinetics of gas reactions, such as oxidation [7], the concept of
linear growth was transferred to solid state reactions whenever a
kinetic control by the interfaces had to be presumed [8,9]. While
to the best of our knowledge no clear and undisputed case of linear
interdiffusion kinetics has been reported for the reaction of pure
metals (perhaps [10]), apparently clear experimental confirma-
tions do exist for silicide reactions, e.g. [11–14]. A. Gusak [15]
has presented arguments that a linear kinetic regime can hardly
be observed in metallic thin films, provided sufficiently efficient
vacancy sinks and sources. However, he also showed that non-
equilibrium vacancies, eventually also other point defects, could
force a significant linear regime at the transition between the early
slow Nernst � Planck interdiffusion stage and the later fast Darken
interdiffusion. So, the concept of linear growth seems to be rele-
vant, even more so as it finds renewed interest in recent work on
reactive diffusion in nanowires [16].

Our article is structured as follows. First, the basic concept of
the suggested transport simulation is summarized. Then, in order
to check its quantitative correctness, we derive an independent
analytical solution of the reactive diffusion problem that can be
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applied to any arbitrary binary phase diagrams. A comparison with
this innovative analytical solution confirms the validity of the
kinetic simulation. But it also demonstrates deviations in early
stages which gives rise to the main aim of this article, the modifi-
cation of the kinetic concept to even simulate the effect of barriers
at interfaces. Quantitative accuracy of this modification is demon-
strated by comparison with the approximate description by Deal
and Grove [7]. Finally, we demonstrate the flexible use of the sim-
ulation in describing complex cases comprising different relevant
interfaces.

2. Basic equations of the kinetic simulation model

The following basic equations for numerical simulation were
derived in Ref. [3] in the context of studying elastic stress and plas-
tic relaxation in core shell nanostructures. For clarity, we repeat
them here in a reduced form that is sufficient to describe the
atomic transport by a vacancy mechanism, but disregarding the
influence of mechanical forces.

2.1. Continuum equations of atomic transport

In order to calculate the change of composition in time and
space by vacancy mediated diffusion, the equation

Dci
Dt

¼ � 1
q
r0 ji

!
�cisv for i ¼ 1; . . . ;n; ð1Þ

is used for all n atomic components. The differential D=Dt is known
as the substantial (or material) derivative. It gives the rate of change
of any scalar quantity seen at a point which follows the motion of

the material coordinate system. Moreover ji
!

is the flux of compo-
nent i;q is the total material density (number of lattice sites per vol-
ume), ci is the atomic fraction of component i; r0 indicates the
divergent calculated in the material coordinate system (see e.g.
[3]), and sv gives the rate of change of the atomic fraction of vacan-
cies due to creation/annihilation.

The total material density can be calculated from the partial
material densities of the components i (qi) and that of the vacan-
cies (qv): q ¼Pn

i¼1qi þ qv . Consequently, atomic fractions are
related to the material densities by

ci ¼ qi

q
for i ¼ 1; . . . ;n and i ¼ v : ð2Þ

In turn, the total density q can also be expressed in terms of partial
atomic volumes

q ¼ 1Pn
i¼1ciXi þ cvXv

: ð3Þ

The rate of vacancy creation/annihilation at a source/sink is consid-
ered to be proportional to the deviation of the current fraction of
vacancies from the equilibrium one

sv ¼ Krate c0v � cv
� �

; ð4Þ
where the rate coefficient Krate determines the effectiveness of sinks
and sources. We emphasise that Krate is not necessarily a constant
but may vary, for instance, with spatial coordinates depending on
the spatial distribution of the sinks and sources [17]. Note that
other expression for sv can be also used. See for instance in
[18,19]. However, the present work is not intended to investigate
the role of the different expressions for sv .

In the case of a vacancy diffusion mechanism, the flux of com-
ponent i can be written as [3,20]

ji
!
¼ �qDi

kT
cvci r0li �r0lv

� �
for i ¼ 1; . . . ;n; ð5Þ

in which we have conveniently defined Di ¼ D�
i =c

0
v , with D�

i being
the tracer diffusion coefficient of the chemical component i
[3,21]; k and T are Botzmann’s constant and the absolute tempera-
ture. Furthermore, li and lv are chemical potentials of component i
and of the vacancy.

For the remaining of this article, we restrict to binary A-B alloys.
If local equilibrium is fulfilled, the chemical potentials behave con-
tinuous. In this case Eq. (5) may also be expressed as

ji
!
¼ �qDi Hicvr0ci �Hvcir0cv

� �
for i ¼ A;B ð6Þ

with the usual thermodynamic factors HA ¼ ð@lA=@ ln cAÞ=kT ¼ HB.
It should be emphasized that Eqs. (5) and (6) are mathematically
equivalent for a binary system. Therefore, in contrast to a recent cri-
tizism [22,23], it is always possible to derive suitable discretisation
schemes for both variants so that identical results are achieved in
numerical calculation.

If vacancy sinks and sources are so efficient that vacancy equi-
librium holds (usually assumed for macroscopic systems), both
variants of the transport equation may be further simplified:

ji
!
¼ �qD�

i

kT
cir0li ¼ �qD�

iHir0ci; for i ¼ A;B ð7Þ

and the sink term in Eq. (1) is neglected. Furthermore, mixing of the
two components in the laboratory reference frame can then be

described by a single exchange flux ~j :¼ jA � cðjA þ jBÞ Here and in
the following c shall denote the atomic fraction of component A.
The relevant driving force becomes the exchange potential
~l :¼ lA � lB so that the appropriate transport equation reads

~j ¼ q
eD
kT

cð1� cÞr~l; ð8Þ

with the interdiffusion coefficient

eDðcÞ ¼ D�
Að1� cÞ þ D�

Bc: ð9Þ

2.2. Chemical driving forces

As a demonstration example, we consider a binary A-B systems
that forms a single intermetallic phase, which stands in equilib-
rium to ideal solid solutions at both terminating sides of the phase
diagram.

The Gibbs energy of mixing of an ideal binary solid solution (SS)
is natural, while the Gibbs energy of the intermetallic phase (IM)
shall be approximated by a second order polynomial, so

gSS ¼ kT c ln c þ 1� cð Þ ln 1� cð Þ½ �;
gIM ¼ �g0 þ V c � cmð Þ2: ð10Þ

Here cm denotes the stoichiometric concentration of component A
in the intermetallic phase, and g0 and V are parameters by which
the existence range of the intermetallic phase can be adjusted.

With this, the chemical potentials of component A for the solid
solution and the intermetallic phases are

lSS
A ¼ kT ln c;

lIM
A ¼ �g0 þ V �c2 þ c2m þ 2c � 2cm

� �
: ð11Þ

As in the composition range 0 . . . c1 the solid solution is stable,
the chemical potential is calculated from lSS

A ; in the range
c2 . . . c3, the intermetallic compound is the stable phase, so l is cal-
culated from lIM

A ; and in the range c4 . . .1, it is calculated again
from lSS

A . In the two-phase ranges c1 . . . c2 and c3 . . . c4, the chemical
potential remains constant and equals to lAðc1Þ and lAðc3Þ calcu-
lated form either lSS

A or lIM
A (for the definition of the boundary con-
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