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a b s t r a c t

In the current work, we elaborate two-dimensional metamaterials of controlled anisotropy. To that scope,
we employ diamond and octagon-shaped planar lattices with and without inner links. Using a dedicated
homogenization technique, we derive closed-form expressions for the lattice’s effective mechanical prop-
erties. We analyse the effect of the lattice’s configuration on the metamaterial’s effective static properties,
identifying configurations with mechanical attributes desirable for morphing, biomedical and mechanical
engineering applications. We thereafter compute the lattice’s wave propagation characteristics, deriving
a link between the metamaterials’ static and dynamic properties. In particular, we analyse the longitudi-
nal and shear wave phase velocity dependence on the lattice’s geometric configuration. Thereupon, we
identify architectural arrangements for which the phase velocity vanishes in certain propagation direc-
tions, exhibiting wave propagation isolation characteristics. We demonstrate that the detected isolation
features can systematically arise for lattice architectural designs that yield highly anisotropic static prop-
erties (thus high material moduli ratios) and anti-auxetic material behaviours (thus non-negative
Poisson’s ratio values).

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The emergence of additive manufacturing in combination with
the advancement of engineering analysis tools has led to a new
paradigm in the design of materials, in which the organization of
matter plays a central role [1,2]. A new class of artificial materials
arose that exhibit static and dynamic properties typically not
encountered in natural materials and have been named as meta-
materials [3]. In the present context, we use the term metamateri-
als to characterize artificial materials that obtain their mechanical
characteristics out of their inner architecture (topology) - com-
monly engineered in periodically arranged unit cells - rather than
out of their chemical composition [4,5].

Up to now a considerable amount of works has been dedicated
to the conception and analysis of auxetic metamaterials, therefore
materials with negative Poisson’s ratios [6]. In particular, the
mechanical properties of chiral lattices, hexa- and tetrachiral
cellural solids have been analysed [7,8]. Auxetics have found a
wide range of applications in different fields, as for example in
the aerospace and automotive industry, primarily due to their
superior shear strength and reduced overall structural weight [9].

The Poisson’s ratio offers a fundamental metric to compare the
material performance [10]. While for isotropic materials the Pois-
son’s ratio value is limited in the range of �1 6 m 6 0:5, anisotropic
materials can well exceed these limits. The necessity to induce a
certain degree of anisotropy in order to achieve non-conventional
mechanical behaviours has been recognized in a series of engineer-
ing fields, amongst others in morphing wing engineering applica-
tions [11]. Thereupon, successful morphing in aerospace or wind
energy engineering has been directly associated with the develop-
ment and usage of materials that exhibit a combination of low
stiffness and high Poisson’s ratio in the one material direction to
‘‘minimize actuation energy”, combined with a high stiffness in
its perpendicular material direction to adequately support aerody-
namic loads [12]. Certain honeycomb and hybrid accordion cellular
solids have been shown to satisfy the previously described stiffness
characteristics [13,14]. Creating metamaterials of controlled aniso-
tropy tuned to be ultra-soft or ultra-stiff and lightweight has
become increasingly important not only in morphing, but also in
biomechanical, civil and mechanical engineering applications
[15–19]. Three dimensional unit cells have been designed so as
to yield a priori specified material stiffness ratios, using evolution-
ary structural optimization methods [20]. Moreover, different
cubic-shaped lattices and origami lattices have been employed to
achieve optimal bulk and shear moduli and controlled Young’s
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modulus values [21,22]. Apart from network materials, highly ani-
sotropic mechanical properties have been obtained using rein-
forced composite structures with stiffness ratios between two
normal material directions ranging from some hundreds up to
some thousands. Such composites were expected to be used in
the design of vibration damping or actuation devices of superior
properties [23].

Certain applications necessitate anisotropic material designs
not only due to stiffness requirements but also because of their
Poisson’s ratio behaviour. Recently, graphene materials with
near-zero Poisson’s ratio values have been fabricated, noting their
need in nano-engineering applications [24]. Furthermore, specific
biological structural members such as tendons and ligaments exhi-
bit Poisson’s ratio values well above the isotropic limits [25,26].
Therefore, the reconstruction of injured tissues such as ligaments
and tendons requires the development of biocompatible biosubsti-
tute materials that can inherently mimic the mechanical response
of the native tissue [27].

In addition to their unusual static mechanical properties, artifi-
cial materials can demonstrate dynamic characteristics not
encountered in common engineering materials. Their wave propa-
gation characteristics can be obtained computing their dynamic
attributes at the scale of their representative building block
[28,29]. A primal design objective has been to obtain material
architectures that favour the development of bandgap frequency
regions. Triangular and hexagonal honeycomb lattices have been
identified as typical lattice configurations that isolate wave propa-
gation over certain frequency ranges [30]. Tetrachiral honeycombs
have allowed for a veering of certain modes with direct application
in both passive and active vibration control [31]. Recently, the abil-
ity to control elastic waves using elastomeric porous material
structures that harness folding mechanisms has been highlighted
[32]. Moreover, deformation induced buckling has been explored
as a novel approach to tune wave propagation [5]. The wave prop-
agation characteristics are highly sensitive to the lattice topology,
with re-entrant and regular hexagonal lattices to exhibit utterly
different dynamical properties [33]. Non-centrosymmetric trian-
gular and square lattices with lumpedmasses have been associated
with the appearance of low frequency bandgaps [34]. For chiral lat-
tices, high chirality angle values have been shown to allow for
bandgaps between the optical and acoustic branches [35]. What
is more, anti-tetrachiral materials of increased auxeticity have
the ability provide full bandgap regions over certain wave propaga-
tion directions [36]. Apart from the lattice topology, geometric and
material non-linearities affect both the directionality and band gap
range of the propagating waves [37,38]. Equivalently, material vis-
cosity attenuates waves resulting in metamaterials with enhanced
acoustic properties [39].

In the current work, we analyse polygonal lattices of controlled
anisotropy. In particular, we consider diamond and octagon shaped
lattices with and without inner links. In Section 2, we employ the
discrete homogenization method to obtain closed-form expres-
sions of their effective mechanical response. We complement the
static analysis with the study of the dynamic wave propagation
characteristics in Section 3. Thereupon, we assess the impact of
increased anisotropy and more specifically of high material moduli
ratios and non-auxetic Poisson’s ratio values on the lattice’s wave
propagation features and conclude in Section 4.

2. Effective static mechanical properties

2.1. Constitutive law in 2D

We consider a general orthotropic two-dimensional elastic
effective constitutive law, defined as follows [40]:
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where �x, �y stand for the normal stress components and �yx for the
shear stress. For planar lattices, no out of plane strains appear, so
that the following strain and stress components vanish:

�z ¼ �xz ¼ �yz ¼ 0 and rz ¼ rxz ¼ ryz ¼ 0 ð2Þ
Using Eqs. (1) and (2), we compute the compliance matrix S as

the inverse of the stiffness matrix S ¼ C�1. The moduli and Pois-
son’s ratio values of the arising continuum are defined as follows
[41,42]:
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G and Poisson’s ratio values m�12 and m�21 of Eq. (3), we rewrite the
elasticity matrix C of Eq. (1) as follows:
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2.2. Discrete asymptotic homogenization method summary

We use a discrete homogenization method, developed to pro-
vide the full compliance or stiffness matrix of lattice architecture
which can handle complex beam lattices in a systematic, algorith-
mic way [43,44]. The method bases its development on the virtual
power form of the equilibrium expressions for the beam (b) nodal
(ni) forces and moments developed within the two-dimensional
(Z2) lattice’s unit cell, as follows:X
ni�Z2

X
b�BR

T�b v�ðOðbÞÞ � v�ðEðbÞÞð Þ ¼ 0

X
ni�Z2

X
b�BR

ðM�OðbÞw�ðOðbÞÞ þM�EðbÞw�ðEðbÞÞÞ ¼ 0 ð5Þ

In the lattice’s force and moment equilibrium expressions of Eq.

(5), T�b stands for the sum of the normal and transverse forces and
M� for the moments developed in each beam element. The virtual
velocity and rotation fields developed at the origin (O) and extrem-
ities (E) of each beam are denoted v� and w� accordingly, � being
the ratio of the elementary cell’s beam length l to the macroscopic
lattice’s length L (� ¼ l=L). Unique nodes ni are defined and num-
bered within the unit cell, while the asymptotic developments of
the nodal velocity and rotation fields are characterized by the
structure’s tessellation through the relative integers di, taking val-
ues in the subset di 2 �1; 0;1½ � (see Fig. 1).

For a two-dimensional problem, the equilibrium expressions of
Eq. (5) lead to a system of 3n in total equations, n being the num-
ber of unit cell nodes. The asymptotic form of the static and kine-
matic variables of Eq. (5) allows for the nodal displacements and
rotations to be expressed with respect to the applied macroscopic
gradients of the displacements in a strain driven scheme, which
define the deformation tensor � applied to the unit cell. By com-

puting the stress vector contributions Si for each node and sum-
ming over the unit cell domain, the effective continuum
description (r ¼ C�) of the weak equilibrium form is retrieved:

Si ¼
X
b�BR

T�bdib !
Z
X
Si @vðk�Þ

@ki
dk¼0()

Z
X
ri @v

@x
dx¼0; r¼1

g
Si� @R

@ki
ð6Þ

324 N. Karathanasopoulos et al. / Computational Materials Science 138 (2017) 323–332



Download	English	Version:

https://daneshyari.com/en/article/5453161

Download	Persian	Version:

https://daneshyari.com/article/5453161

Daneshyari.com

https://daneshyari.com/en/article/5453161
https://daneshyari.com/article/5453161
https://daneshyari.com/

