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a b s t r a c t

The interaction between screw dislocations and vacancies in body-centered cubic metals is investigated
using molecular dynamics simulations. For thirteen different classical interatomic potentials, materials
properties relating to vacancies, dislocations, and the interaction between the two are evaluated. The
potentials include six for iron, two for molybdenum, and five for tantalum, and they are a mix of embed-
ded atom method (EAM), modified embedded atom method (MEAM), and angular dependent potential
(ADP) styles. A previously unknown behavior was identified during the interaction simulations. Out of
the thirteen potentials investigated, ten predict a vacancy on the dislocation core to no longer remain
as a discrete point defect, but rather to dissociate along the dislocation line. The structure of the dissoci-
ation is dependent on the potential and is characterized here. As this vacancy dissociation alters the core
structure of the dislocation, it may prove to be a new mechanism for dislocation pinning and pipe
diffusion.

Published by Elsevier B.V.

1. Introduction

The mechanical properties of metals are intimately tied to the
nature of the dislocations within the material, and how those dis-
locations interact with other types of defects. In particular, point
defects can alter the slip nature of dislocations resulting in soften-
ing or hardening of the material, and self-point defects (vacancies
and self-interstitial atoms) allow for dislocations with edge com-
ponents to climb. This interaction is coupled in the sense that
the presence of dislocations also alters the diffusion of the point
defects. Dislocations can serve as sinks for point defects, and diffu-
sion along dislocation lines is different than in the bulk material
(pipe diffusion) [1].

Despite the importance of defect interactions, experimental
measurements of behaviors and mechanisms at the relevant scales
are limited. Computational tools and models can thus provide
insight not easily obtained experimentally. Atomic scale calcula-
tions have been used for decades to investigate the structures,
motions and interactions of point defects and dislocations. Multiple
studies have performed molecular statics calculations of the
vacancy formation energy near the dislocation core [2–11]. Maps
of the formation energy versus position have been compared to
elasticity models [2,5], used to estimate a vacancy trap energy
and radius [5,10], and used as the foundation for modeling the

vacancy diffusion pathway in and around the dislocation core using
a variety of techniques [7,9,10,12,13]. A hybrid quantum-classical
investigation revealed that the core reconstruction influences the
interaction energy close to the dislocation core [11]. Density func-
tional theory (DFT) calculations of impurity interstitials in body-
centered cubic (bcc) iron revealed that the impurities alter the
stable screw dislocation core [14].

The power of classical atomistic simulations is that they allow
for the prediction of materials properties and behaviors that
require both an atomistic description as well as length and time
scales far beyond what can be achieved with quantum-based
atomic calculations. The limitation is that their empirical nature
means that the predictions obtained can be strongly potential-
dependent, especially for behaviors that were not explicitly fit to.
This is particularly relevant for the investigation here as, while
most metallic potentials are fit with vacancy properties in mind,
only a few so far have explicitly considered dislocation behaviors,
and none have been fit to produce specific dislocation-vacancy
interactions. Because of this, it is necessary to consider the predic-
tions of multiple potentials, and to show how each of those poten-
tials predicts not only the dislocation-vacancy interaction, but also
the more basic properties of the isolated defects.

In this paper, we investigate the interaction of the bcc screw
dislocation with vacancies using thirteen different classical inter-
atomic potentials. The basic formation energies and structures
for the isolated defects are calculated and compared. Static
dislocation-vacancy interaction maps are computed showing the
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strength of the dislocation-vacancy interaction as a function of the
radial vector from the dislocation core to the vacancy’s position. In
investigating the size-dependence of the dislocation-vacancy
interaction energies on the periodic z-dimension, it was revealed
that a number of potentials predict the vacancy to dissociate along
the dislocation line. This dissociation is characterized for all of the
potentials.

2. Calculation methods

In order to differentiate the various interatomic potentials used
here, we follow the convention used on the National Institute of
Standards and Technology’s Interatomic Potential Repository web-
site. The name for each potential is composed by combining the
publication year, first author’s last name and initials, and short
description of the model. The six potentials of iron used are
1997--Ackland-G-J--Fe [15], 2003--Mendelev-M-I--Fe-2 [16],
2003--Mendelev-M-I--Fe-5 [16], 2004--Zhou-X-W--Fe [17],
2006--Chamati-H--2006--Fe [18], and 2012--Proville-L--Fe [19].
The two potentials of molybdenum used are 2004--Zhou-X-W--
Mo [17] and 2012--Park-H--Mo [20]. And, the five potentials of
tantalum used are 2003--Li-Y-H--Ta [21], 2004--Zhou-X-W--Ta
[17], 2013--Ravelo-R--Ta-1 [22], 2013--Ravelo-R--Ta-2 [22], and
2015--Purja-Pun-G-P--Ta [23]. All of these potentials are embed-
ded atom method (EAM) potentials [24] with the exception of
2012--Park-H--Mo being a modified embedded atom method
(MEAM) potential [25] and 2015--Purja-Pun-G-P--Ta being an
angular dependent (ADP) potential [26].

Performing the calculations in a high-throughput manner was
further supported by the iprPy Python-based framework (source
code available at https://github.com/usnistgov/iprPy). This frame-
work was developed as part of the NIST Interatomic Potential
Repository project to assist in evaluating and comparing how dif-
ferent interatomic potentials predict a variety of basic materials
properties. The atomman Python package (source code available
at https://github.com/usnistgov/atomman) was used as a wrapper
for the LAMMPSmolecular dynamics software [27,28] by preparing
atomic systems, constructing LAMMPS input scripts, executing
LAMMPS, and performing post-run analysis of the simulation
results. Embedding the simulations in Python is advantageous as
it creates a complete record of the calculation process which sup-
ports sharing the calculation code for verification and knowledge
transfer. Additionally, atomman treats LAMMPS potentials as mod-
ular entries making it easier to perform the same simulations with
multiple potentials.

Lattice and elastic constants were calculated using the
refine_structure calculation in iprPy. This routine starts with an
initial guess for the lattice constants of a structure. System-wide
pressures are evaluated statically using LAMMPS for both the ini-
tial system as well as for small strains (1� 10�5). The elastic con-
stants of the system are obtained by comparing changes in stress
(pressure) to changes in strain, and a new lattice parameter guess
is obtained by assuming linear elasticity and extrapolating to the
lattice dimensions associated with zero pressure. The calculation
then iterates until the lattice parameters converge.

The iprPy calculation point_defect_static was used to compute
the vacancy formation energy. Perfect systems are constructed
using the refined lattice constant values, then an atom is deleted
and the local atomic positions are allowed to relax to a force toler-
ance of 1� 10�8 eV/Å. The formation energy is obtained as the
change in energy of the system with the addition of the vacancy
minus the per-atom cohesive energy of the perfect system. This
is repeated for supercells ranging from 3� 3� 3 to 10� 10� 10,
and final values are obtained by plotting the formation energy

versus the inverse number of atoms and extrapolating to infinite
atoms.

Dislocations were investigated using dislocation monopole sys-
tems. Initially, a perfect bcc block of atoms was constructed with
Cartesian axes corresponding to the crystallographic axes of
½½�12 �1�; ½�101�; ½111��. The dimensions of the atomic block are
48a
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p
� Z, where a is the cubic lattice constant and Z

varies with different simulations. Z is always a multiple of 2b,
where b is the magnitude of the a=2½111� Burgers vector.

A dislocation parallel to the z-axis was created by adding to the
atom positions the displacements associated with the Eshelby ani-
sotropic elasticity solution [29] for a perfectly straight dislocation.
The anisotropic elasticity solution was obtained using the Stroh
method [30–32] code contained in atomman.

The system is divided into two regions: an active region defined
by the volume within a cylinder parallel to the z-axis, and a non-
active region defined as the remaining volume of the system. The
atoms in the non-active region remain fixed at the positions asso-
ciated with the anisotropic displacement solution while the atoms
in the active region are relaxed using energy minimization. The
radius of the active region is defined such that the non-active
region is always at least 3a thick, i.e. ractive ¼ að20
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2

p
� 3Þ �

25:284a. The atoms in the active region were relaxed by perform-
ing 10,000 Nose-Hoover NVT integrations at 100 K, followed by
1000 NVT integrations with the temperature linearly scaling down
to 0.01 K, and finally performing a minimization to a force toler-
ance of 1� 10�5 eV/Å.

The Peierls barrier was evaluated using nudged elastic band
(NEB) calculations [33,34]. Two dislocation monopole systems
with Z thickness of 2b are constructed in which the dislocations
are one periodic distance apart along the ð�101Þ slip plane. The
NEB calculation identifies the low energy transition pathway
between the two initial end states giving the non-kinked slip bar-
rier of the dislocation.

The interaction of the dislocation with a vacancy was examined
by performing multiple simulations where a single atom at radial
position, r, from the dislocation core’s xy position was removed
from the relaxed dislocation monopole system, and the system
was relaxed to a force tolerance of 1� 10�5 eV/Å. The formation
energy of the vacancy near the dislocation core, Ef ðrÞ, was then
obtained by comparing the energy of the dislocation system before
and after the vacancy was added. Finally, the dislocation-vacancy
interaction (DVI) energy, EDVI , is taken to be the vacancy formation
energy relative to the bulk formation energy, E0

f ,

EDVIðrÞ ¼ Ef ðrÞ � E0
f ð1Þ

3. Results and discussion

3.1. Basic properties

The lattice constants, elastic constants, cohesive energy,
vacancy formation energy, dislocation core structure and Peierls
barrier shape results are summarized in Table 1. These basic prop-
erties of the perfect crystal and the isolated defects of interest all
influence how the defects move and interact with each other.
The bulk crystal and vacancy property values can be directly com-
pared to experimental measurements.

Across the potentials of the same element we see that the bulk
property values tend to be similar, with most differences due to the
potentials fitting these values precisely to different reference val-
ues. The only unexplained outlier is that the lattice constant for
the 2012--Proville-L--Fe potential is noticeably smaller than the
other iron potentials. There is more variation across the vacancy
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