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Additive manufacturing (AM) is of tremendous interest given its ability to realize complex, non-
traditional geometries in engineered structural materials. However, microstructures generated from
AM processes can be equally, if not more, complex than their conventionally processed counterparts.
While some microstructural features observed in AM may also occur in more traditional solidification
processes, the introduction of spatially and temporally mobile heat sources can result in significant
microstructural heterogeneity. While grain size and shape in metal AM structures are understood to

Key W?Td&' be highly dependent on both local and global temperature profiles, the exact form of this relation is
Kinetic Monte Carlo . . . .
Microstructure not well understood. Here, an idealized molten zone and temperature-dependent grain boundary mobil-

ity are implemented in a kinetic Monte Carlo model to predict three-dimensional grain structure in addi-

tively manufactured metals. To demonstrate the flexibility of the model, synthetic microstructures are

generated under conditions mimicking relatively diverse experimental results present in the literature.

Simulated microstructures are then qualitatively and quantitatively compared to their experimental

complements and are shown to be in good agreement.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

Additive manufacturing

1. Introduction
1.1. Metal additive manufacturing techniques

Metal additive manufacturing (AM) allows for the creation of
non-traditional and highly complex parts with sophisticated
geometries [1]. The field is rapidly evolving with significant activ-
ity directed toward improving processing methods, understanding
material compositions, developing post-build heat treatments, and
the computational tools to treat these various aspects [1-4]. Based
upon the powder-delivery method, metal additive manufacturing
methods can be classified into two general categories: (1) Laser
Engineered Net Shaping (LENS) or (2) Powder Bed Fusion (PBF).
LENS methods utilize a carrier gas stream to transport powder
through a nozzle directly into a melt pool (typically generated by
a coaxial laser) at the surface of the build [5]. In PBF, a heat source
(typically an electron or laser beam) is rastered across a bed of
metallic powder to locally melt and solidify material. Upon com-
pletion of a layer, additional powder is spread onto the bed from
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an adjacent reservoir [6] and the process continues. Both methods
construct builds in a layer-by-layer fashion, but have markedly dif-
ferent melting and solidification dynamics. Raster-patterns in LENS
methods are typically less complex than those found in PBF, as the
powder nozzle and coaxial laser assembly must move in tandem.
Alternatively, PBF techniques, which raster the incident beam with
mirrors or electromagnetic fields, are capable of faster scan rates
and more elaborate scan strategies [7,8].

1.2. Common features of AM microstructures

While metal additive manufacturing techniques can be gener-
ally classified in two categories, the multitude of machines, mate-
rial systems and specific goals for AM implementation have
yielded tremendous variety in microstructures. This drastic vari-
ability at the microstructural level is due to the non-uniform local
solidification behavior occurring in the process [1,2]. Common fea-
tures of the resulting heterogeneity are a mixture of elongated and
equiaxed grains, often having a visible periodicity corresponding to
the layer height, line width and scan pattern used [7,9]. The tran-
sition between these grain types is controlled by the thermal gra-
dient (G) and solidification front velocity (V) at the solid-liquid
interface. These two parameters have been used to understand
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and predict microstructural morphologies in directional solidifica-
tion [10] and welding for decades [11,12].

In addition to basic solidification behavior, the varying scan pat-
terns for PBF and LENS methods have also been shown to produce
significant changes in grain structure [7,9]. Island scan strategies in
PBF (where the build layer is divided into independently-scanned
sub-regions) can lead to rectangular partitions of elongated grains
bound by equiaxed microstructures [7]. Linear scan patterns in
LENS can lead to more continuous grain structures along the scan
direction [13]. Furthermore, simple variations such as scanning in a
uni- or bi-directional pattern, or cross-hatching between layers can
also lead to additional variation in resulting grain morphology
[9,14]. These deviations from microstructures created by tradi-
tional techniques can result in varied mechanical properties [15-
17]. The variation across such an extensive and sensitive set of pro-
cessing parameters makes the use of traditional design of experi-
ment approaches both expensive and time consuming. However,
the use of process modeling and subsequent data science based
analyses offer a significant opportunity for the acceleration of pro-
cess development and microstructural forecasting in the realm of
AM [18].

1.3. Applications of computational materials science to AM

Current models for microstructure prediction in additive manu-
facturing are often extensions of methods initially developed for
directional solidification or welding [19]. A number of these have
included coupled cellular automata-finite element (CAFE) [20-
24] or Lattice Boltzmann-cellular automata approaches [25,26].
The cellular automata models were designed for a single solidifica-
tion front with limited effects from subsequent reheating or
remelting. Additionally, while these methods often simulate grain
growth with a detailed treatment of solidification, most are cur-
rently limited to two-dimensions and/or a relatively restrictive
number of heat source passes in comparison to an actual additive
build. Comparisons of the strengths and weaknesses of these vari-
ous methods are summarized in Table 1. It is important to note
that for current computing capabilities, even “low” cost methods

Table 1
Comparison of AM microstructure simulation methods.

may remain impractical for microstructural simulations of an
entire AM build (especially for powder-bed methods where the
cumulative path length of the beam over the entire build process
can be many kilometers [4]).

The need for computationally efficient techniques to predict
varying characteristics of AM-produced components, at the scale
of experimental builds, has been identified by many researchers
[3,25,27]. This is a challenge as typical additive manufacturing pro-
cesses can require solidification of hundreds of layers and hours of
build time. Many electron-beam and laser welding models capture
relevant physics but are limited to short lengths and/or abbrevi-
ated time scales [12,28]. Current literature suggests a number of
simulation methods are under active development for either
high-fidelity modeling of AM processes at short times and small
length scales [27], or conversely, lower-complexity simulations at
longer times and greater length scales [29,30]. Regardless, few
methods exist that capture fine-scale microstructural detail across
a sufficiently large scale to predict microstructure over many
passes and layers.

In the 1980s Ashby, Easterling, and Ion proposed a kinetics-
based model for the prediction of average grain size in the heat-
affected zone (HAZ) of weldments using a formalization of stochas-
tic probability [32,33]. This model argued that curvature-driven
grain growth within a thermal gradient was the dominant mecha-
nism for grain evolution. The kinetic model used closely resembles
the integration of the Metropolis function (commonly used in
many Monte Carlo simulation techniques) over the temperature
history present. Recently, Wang, Palmer, and Beese extended the
model to predict average grain size in AM microstructures [15].
Although the mechanism of grain nucleation from the molten zone
has yet to be robustly treated in models of this fidelity, these works
show significant portions of grain formation can be reliably
described by the treatment of grain boundary curvature as a pri-
mary mechanism.

In this work, a similar approach is invoked for the simulation of
grain evolution over hundreds of passes in a 3D domain. The
method is derived from the Potts kinetic Monte Carlo model for
grain growth [34] and builds upon recent modifications to enable

Method and Approximate Computational Cost Benefits

Challenges

Cellular Automata-Finite Element (CAFE) (High)

[21,23] microstructure.

Cellular Automata-Lattice Boltzmann (High) [26]

Monte Carlo (Medium) [18,30]
source passes.

e Approximates microstructure during solidification and
solid-state grain evolution.

Utilizes idealized molten zones, without the need to
parameterize for specific material systems.

Included in the open-source SPPARKS Monte Carlo suite.

Empirical Microstructure models (Low if thermal
prediction exists, otherwise medium) [31]

models.

Provides coupled predictions of thermal behavior and

Incorporates crystallographic texture.

Allows for coupled thermofluid and microstructure evo-
lution on same lattice.
Incorporates crystallographic texture.

Predicts full 3D microstructures with hundreds of heat

Estimates microstructural features over large builds.

Allows extension of pre-existing thermal simulation

Does not simulate solid-state grain evolu-
tion after solidification.

Limited to few passes of a heat source.
Free open-source code currently
unavailable.

Lattice Boltzmann provides unstable solu-
tions for many regimes.

Does not simulate solid-state grain evolu-
tion after solidification.

Limited to few passes of a heat source.
Free  open-source  code  currently
unavailable.

Does not allow for direct coupling of ther-
mal and microstructural models.
Quantitative ties to experimental condi-
tions are less developed.

Currently does not incorporate material
texture or anisotropy.

Does not provide microstructure for fur-
ther analysis.

Requires estimation of
environment.

Not well explored for many material sys-
tem in AM.
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