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We review the major efforts that improve the accuracy of Peierls-Nabarro (PN) model in predicting core
structure and Peierls stress, and recognize that the nonlocal atomic interactions in the core region should
be accounted for in calculating the dislocation energy. Although some efforts have been devoted to taking
the nonlocal interaction into account, further improvement is needed to simplify the computational com-
plexity and resolve the inconsistency between the continuum model and the discrete nature of the lat-
tice. Here we developed a two-dimensional (2D) and a three-dimensional (3D) nonlocal semi-discrete

g?i’lvgggﬁn variational Peierls-Nabarro (SVPN) models by incorporating the nonlocal atomic interactions into the
Nonlocality semi-discrete variational Peierls framework. The nonlocal SVPN models are applied to dislocations with

extended core in copper and compact core in iron. Molecular dynamics simulations are performed to val-
idate the model predictions. We found that the nonlocal SVPN model (both 2D and 3D) significantly
improves the prediction accuracy for dislocation core structure and Peierls stress. Moreover, the results
show that the 2D and 3D models give similar predictions of the Peierls stress and dislocation core struc-
ture, when the atomic relaxation in the normal direction is allowed in the 2D model to describe the inter-
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atomic interactions in the slip plane.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Crystal plasticity is accommodated by dislocation slips and
localized shear transformations (such as twinning and phase trans-
formation) that are accomplished by the movement twinning dis-
locations/disconnections or steps. The mobility of these linear
defects to a great extent determines mechanical properties of
materials. Therefore, accurate prediction of Peierls stress for a dis-
location (the minimum external stress to move a straight disloca-
tion) is vital to understand the mobility of the dislocation. Much
effort has been devoted to measure and estimate the Peierls stress
associated with dislocations by using theory, modeling, and exper-
iments [1-4]. Molecular statics/dynamics simulations that are cap-
ably of calculating atomic interactions in full three dimensions
were extensively used to study dislocation behaviors including
nucleation, motion, and reactions [5-7]. However, it is limited for
complex system because of the unavailability of the empirical
potentials for molecular statics/dynamics simulations. Atomistic
calculations using first principles density function theory have no
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dependence on potentials while have the limited simulation vol-
umes. Thus it is rarely used to study the motion of dislocations.
Continuum elasticity theory well describes the long-range elas-
tic strain of a dislocation for length scales beyond a few lattice
spacing, but it breaks down in the region surrounding the disloca-
tion center (referred to as the dislocation core). The early crystallo-
graphic model developed by Peierls and Nabarro (PN) [8,9]
(referred to as original PN model) was the first one to describe
crystallographic character of a dislocation core in the frame of con-
tinuum elasticity theory based on the assumption of one dimen-
sional sinusoidal law for atomic interactions across the slip
plane, and its analytical solution gave the core structure and Peierls
stress for the first time. This method is naturally associated to the
inconsistency between the continuum model and the discrete nat-
ure of the lattice [10,11]. There has been a great deal of interest in
describing accurately the core structure of a dislocation at the
atomic scale because the structure and properties of dislocation
core control the mobility of the dislocation, which accounts for
the intrinsic ductility or brittleness of solids. To capture the core
structure of a dislocation, several improvements [11-15] have
been proposed in past decades. Vitek [12,13] proposed a more
physically realistic way to describe atomic interactions by replac-
ing the sinusoidal force with the gradient of the y-surface (the
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model is thus referred to as the y-PN model), and from the maxi-
mum slope of which, the Peierls stress of dislocations with both
narrow and wide core can be directly estimated [16,17]. Schoeck
[14,15] further generalized the y-PN model to a two dimensional
one. The y-PN models have been frequently adopted to investigate
dislocation properties [18-21] for its efficiency in obtaining the
two dimensional dislocation core. Inconsistency between the con-
tinuum and discrete treatment of the dislocation in the y-PN
model was overcome by the semi-discrete variational Peierls
framework (referred to as SVPN model) [11]. In SVPN model, dis-
crete nature of the lattice was accounted for in calculating the dis-
location energy, and the dislocation profile was allowed to fully
relax in three dimensions as the dislocation moves in lattice under
the external applied stress [11].

All these improvements were made within the locality assump-
tion, i.e., the misfit energy in the region of dx depends only on the
v-surface at that local atomic site, which was implied in that the
v-surface was calculated using a uniform disregistry vector. How-
ever, the large gradient in the dislocation profile has been demon-
strated using atomistic simulations but not incorporated into PN
models. Schoeck [22] and Miller et al. [23] modified the misfit
energy in the slip plane by considering the large displacement gra-
dient effects in the core region in order to account for the nonlocal
effects. Their applications were limited due to the complicated
nonlocal mathematical formulation or the difficulty in assessing
the nonlocal parameters. In this work, we developed an improved
two-dimensional (2D) nonlocal SVPN model by incorporating the
nonlocal atomic interactions into the SVPN model, wherein the
form of the nonlocal interaction energy term was inspired from
the nonlocal kernel derived by Miller et al. [23] but extended to
two dimensions in a simpler form, and the nonlocal coefficient is
computed directly from the dislocation core structure. Moreover,
we extended the improved 2D nonlocal SVPN model to a three-
dimensional (3D) one by explicitly introducing the vertical compo-
nent of the disregistry vector in the dislocation energy. Finally, we
tested our 2D and 3D nonlocal SVPN models for dislocations in iron
and copper, by comparing predictions for the core structure and
Peierls stress with MD simulations.

2. Typical PN models
2.1. Local PN models

In the original PN model [8,9,24], dislocation energy is com-
posed of two parts, the elastic energy stored in the two half contin-
uum linear elastic solid separated by the dislocation slip plane, and
the atomic misfit energy in the slip plane to account for the non-
linear interatomic interaction, which is confined in the slip plane.
The dislocation profile or the disregistry, 5(x) (relative displace-
ment of the atom pairs across the shear plane), should minimize
the total energy. Correspondingly, the total energy is a functional
of the dislocation profile,

E[é(x)} = Eelasﬁ'c + Emisﬁt
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where the two terms on the right hand are the elastic energy and
the misfit energy respectively. K depends on the dislocation type,
and equals to u/(4m) for a screw dislocation and p/(4(1 — v)m) for
an edge dislocation assuming isotropic elasticity, where u is the
shear modulus and v is the Poisson’s ratio. y[é(x)] is the misfit
potential to describe the interatomic interaction across the slip
plane, gradient of which is the atomic restoring force. The disloca-
tion profile is obtained by minimizing the total energy. Then Peierls
stress is determined as the maximum slope of the misfit energy

variation as the dislocation profile is rigidly translated in crystal
for one lattice period.

Three major simplifications were made in the original PN model.
(i) One dimensional sinusoidal form for the periodical misfit poten-
tial p[6(x)] was assumed to describe the interatomic interactions.
(ii) Inconsistency exists in calculating the misfit energy, which
was obtained by continuously integrating the y[d(x)] in Eq. (1) to
obtain the dislocation profile §(x), but to determined Peierls stress
it was obtained by discretely summing up y[6(x;)] at atomic sites
x;. (iii) Dislocation profile was rigidly translated in the lattice with-
out relaxation in determining the Peierls stress.

To better describe the interatomic interactions, the concept of
the y-surface (the generalized stacking fault energy (GSF energy)
surface firstly proposed by Vitek [12,13]) was used. Joos et al.
[16,17] firstly modified the magnitude of the sinusoidal misfit
potential according to the maximum gradient of the <y-surface.
Later, Schoeck [14,15] directly replaced the sinusoidal misfit
potential in Eq. (1) with the y-surface, and the PN model was thus
generalized to a 2D one (referred to as y-PN model), the dislocation
energy is written as,
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where the dislocation profile ?(x) is a 2D vector spreading in the
slip plane. The symmetric Stroh tensor H in the elastic energy term
can account for the elastic anisotropy according to anisotropic elas-
tic theory [25,26]. The 2D disregistry profile is solved by variational
methods. Peierls stress is calculated based on the variation of the
misfit energy (by discretely summing the GSF energy y[d(x;)] at
atomic sites x; instead of continually integrating the GSF energy)
with respect to the rigid translation of the dislocation profile in lat-
tice. Due to the availability of y-surface from first principles calcu-
lations, the y-PN model has been widely applied to investigate
dislocation properties such as dislocation dissociation, grain bound-
ary dislocations and even dislocation properties under high pres-
sure [18-21].

The inconsistency between the discrete nature of the lattice and
the continuum treatment of the 2D disregistry vector in integrating
the dislocation energy, is conquered by SVPN model [11]. The elas-
tic energy and misfit energy in SVPN model were calculated by lin-
early interpolating the dislocation profile according to the position
of the atomic rows x;. By doing so, discrete nature of the lattice was
accounted for. Moreover, the dislocation profile is treated as a 3D
disregistry vector (two in-plane components plus the normal com-
ponent) to describe the dislocation core. Therefore, the dislocation

profile ?(x) is discretized as 6,(x;), k =1, 2, 3 denoting the disloca-
tion profile along x-, y- and z-direction respectively, where y is the
normal direction. The total energy is thus rewritten as
E[ 0 (X,‘)} = Eel + Emisﬁt - Eapp
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The discrete coefficient y; is
Li =3 bis1ibiety + Wiy + Visrjer — Yirrj — Vigen
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The first two energy terms correspond to the elastic energy and
misfit energy in the discrete forms, similar to those in Eq. (1) for
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