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a b s t r a c t

We study fluid permeability in random sphere packings consisting of impermeable monodisperse hard
spheres. Several different pseudo-potential models are used to obtain varying degrees of microstructural
heterogeneity. Systematically varying solid volume fraction and degree of heterogeneity, virtual screen-
ing of more than 10,000 material structures is performed, simulating fluid flow using a lattice Boltzmann
framework and computing the permeability. We develop a well-performing functional regression model
for permeability prediction based on using isotropic two-point correlation functions as microstructural
descriptors. The performance is good over a large range of solid volume fractions and degrees of hetero-
geneity, and to our knowledge this is the first attempt at using two-point correlation functions as func-
tional predictors in a nonparametric statistics/machine learning context for permeability prediction.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

In adsorption, filtration, separation, chromatography, and catal-
ysis applications, understanding the impact of microstructural
morphology of random, heterogeneous, porous materials on effec-
tive transport properties is key [1–5]. Indeed, establishing quanti-
tative structure-property relationships and determining the
importance of different three-dimensional morphological charac-
teristics is a prerequisite for targeted optimization of a microstruc-
ture, and hence fine-tuning of a material for a specific purpose [6].
In e.g. gel chromatography, spherical gel particles are packed into a
column through which solutes in liquid suspension flows. The sep-
aration of the solutes is determined largely by the flow around the
gel particles, which is a function of microstructure.

There is generally a lack of good analytical expressions for
quantitative structure-transport relationships [7], although there
are empirical expressions like the Kozeny-Carman equation for
estimating permeability [8,9] which can sometimes be rather use-
ful. Exact prediction of transport properties, effective diffusivity
and permeability, in random, heterogeneous, porous materials
requires in principle complete knowledge of the microstructure

in three dimensions i.e. the geometry of the solid-liquid interface.
Complete microstructural information in three dimensions is not
accessible for real materials; hence, there is a great interest in find-
ing useful proxies i.e. pieces of limited microstructural information
that capture the essential features.

A well-investigated set of microstructural descriptors are the n-
point correlation (probability) functions for n ¼ 1;2; . . ., introduced
by Brown [10] for estimating effective transport properties in ran-
dom materials. The set of all these correlation functions provide
complete microstructural information, but are in practice increas-
ingly unavailable for increasing n [11]. Two-point and three-point
correlation functions and microstructural parameters derived from
them have been used to establish lower and upper bounds for
effective transport coefficients. This includes both effective diffu-
sivity (including other physical processes mathematically analo-
gous to effective diffusivity, like electrical conductivity, thermal
conductivity, and magnetic permeability) [12–18] and fluid perme-
ability [19–24]. In two fairly recent papers [25,26], a microstruc-
tural parameter extracted from the three-point correlation
function and introduced by Torquato [16] is used in prediction of
effective diffusivity in monodisperse and polydisperse hard sphere
systems.

In this work, we are concerned with permeability in random
sphere packings consisting of monodisperse, impermeable, solid,
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hard spherical particles. This is a highly interesting case e.g. for the
design of materials for chromatography, separation and catalysis.
Several different pseudo-potential models are used to obtain vary-
ing degrees of microstructural heterogeneity i.e. varying the distri-
bution of pore space sizes. Systematically varying solid volume
fraction and degree of heterogeneity, virtual screening of more
than 10,000 material structures is performed, simulating fluid flow
using a lattice Boltzmann framework and computing the perme-
ability. It is evident that the permeability will depend not only
on the solid volume fraction (and on the specific surface which is
perfectly correlated with the solid volume fraction in this setting)
but also on the microstructure. We develop a functional regression
model for permeability prediction based on using isotropic two-
point correlation functions as microstructural descriptors. The per-
formance is good over a large range of solid volume fractions and
degrees of heterogeneity, and to our knowledge this is the first
attempt at using two-point correlation functions as functional pre-
dictors in a nonparametric statistics/machine learning context for
permeability prediction.

2. Results and discussion

2.1. Microstructure generation

Statistically homogenous and isotropic sphere packing
microstructures are generated using a hard sphere monte carlo
algorithm. A target solid volume fraction / is chosen uniformly dis-
tributed in the range 0:10 6 / 6 /RCP, where /RCP � 0:64 is the ran-
dom close packing limit [27]. Monodisperse spheres (N ¼ 4096)
with radii R ¼ 1 are placed uniformly distributed in a cubic simu-

lation domain ½0; L�3 with periodic boundary conditions, possibly
with some overlaps. The initial simulation domain length L is cho-
sen such that the initial solid volume fraction (given that no parti-
cles overlap) is /start ¼ min /;0:55ð Þ, where / is the target solid
volume fraction. The reason for this choice is that it is increasingly
more difficult to remove overlaps for increasing solid volume frac-
tions, which will be further discussed below. The relation between
solid volume fraction and simulation domain length is

L ¼ 4pN
3/

� �1=3

R: ð1Þ

After the initialization, the system is relaxed i.e. all overlaps are
removed by sequentially translating the spheres by normal dis-
tributed displacements with zero mean and standard deviation
rt. The amount of overlap is characterized by a system energy
function,

E ¼
XN
i¼1

XN
j¼iþ1

max 0; ðRi þ RjÞ2 � kxi � xjk2
� �

; ð2Þ

where Ri ¼ Rj ¼ 1 are the radii of spheres i and j and xi and xj are
their positions. The energy between two non-overlapping particles
is zero and the energy between two overlapping particles is a quad-
ratic function of the amount of overlap. Only translations which
lead to a decrease in E are accepted. The standard deviation rt is ini-
tially 0.05 but is then adaptively adjusted in each sweep, striving for
an acceptance probability target value of 0.25. After relaxing the
system (i.e. after the system energy has reached E ¼ 0, which is pos-
sible because the solid volume fraction is set to a value below the
random close packing limit, hence all overlaps can be resolved), it
is equilibrated by performing 100 sweeps at E ¼ 0. If / 6 0:55, we
are now done with generating a basic structure and proceed to
obtain controlled heterogeneities as described below. However, if
/ > 0:55, the simulation domain is gradually compressed in con-
stant increments of /;D/ ¼ 5 � 10�5, until the target solid volume

fraction is reached, enforcing that E ¼ 0 at each step before com-
pressing further. The system is then equilibrated again by perform-
ing 100 sweeps at E ¼ 0. All these steps are performed using the
same algorithm for random translations as described above.

To obtain controlled heterogeneities, realizations of periodic
random pseudo-potentials f are generated and the spheres perform
random displacements (with the constraint that E ¼ 0) using the
same algorithm as above until the total potential of the system,

P ¼
XN
i¼1

f xið Þ; ð3Þ

is minimized (it is possible that the optimization of P converges to a
local but not global minimum, i.e. a metastable state, but this fact
does not compromise our purpose of generating these structures
because the wide range of heterogeneities is nevertheless obtained).
Three different types of pseudo-potentials are used: For type (I), we
use a uniformly random number M (between 1 and 128) of uni-
formly distributed attractive quadratic point potentials centered
in the points ym,

f xð Þ ¼ �
XM
m¼1

kx� ymk�2: ð4Þ

For types (II) and (III), realizations of Gaussian random fields are
simulated on a 1283 grid using fast Fourier transform methods
[28]. For type (II), we use a covariance function family taken from
Euclidean quantum field theory [28,29], with the density of the
measure given by the Fourier transform of the covariance function
being

c pð Þ ¼ 1þ p2k
1 þ p2k

2 þ p2k
3

� �l� ��n
ð5Þ

for k ¼ 1; n ¼ 1:765, and l ¼ 1:5. Briefly, the square root of this den-
sity is multiplied by independent white noise on a grid and inverse
Fourier transformed to yield a random periodic function, the spatial
scale of which is varied to generated different degrees of hetero-
geneity. For type (III), we use a Matérn covariance function family
[30] with

c pð Þ ¼ 8p3
2C mþ 3

2

� �
2mmm

C mð Þl2m
2m
l2

þ 4p2 p2
1 þ p2

2 þ p2
3

� �� ��m�3
2

ð6Þ

using m ¼ 5 and l ¼ 0:2, and C is the gamma function. As for type
(II), the spatial scale is varied to generate different degrees of
heterogeneity. A considerable range of degrees of heterogeneity is
hereby systematically explored. We refrain from getting into more
technical detail about the Gaussian random fields, but proceed to
showing examples of pseudo-potentials and the corresponding gen-
erated sphere packing microstructures in Fig. 1, showing one struc-
ture from each class, all with solid volume fraction / ¼ 0:15. In
total, in excess of 10,000 sphere packing microstructures are gener-
ated in this fashion. Data sets with both uniformly distributed, ran-
dom solid volume fractions / as well as fixed solid volume fractions
/ ¼ 0:10; 0:15; . . . ; 0:55 are generated, the latter to study the impact
of microstructure isolated from solid volume fraction and specific
surface. The algorithms are implemented in Julia [31,32]. The com-
putational time required to generate the structures is 0.6 h on
average.

2.2. Flow simulations

The generated microstructures are converted to binary voxel
structures of size 1923 voxels, that in turn are converted to geo-
metric surface data (triangulated surfaces which is necessary for
input into the flow simulation software; however, the flow simula-
tions are performed on a voxel grid). The fluid flow through the
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