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a b s t r a c t

Estimating Density Functional Theory (DFT) calculation error is an important while challenging task in
computational material science. The calculation contains inherent errors due to improper input param-
eters and approximated exchange-correlation functional. In this paper, we present a data-driven
approach of using machine learning techniques to estimate the error of DFT calculation. We prepare
the data by high-throughput first principle DFT simulation and experimental data collection. The
single-hidden layer back propagation feedforward neural network (SLBPFN) constructed based on the
proposed cross validation algorithm, and support vector machine for regression (SVR) techniques are
employed to build regression models to predict the DFT calculation error. As a demonstration, the devel-
oped regression models are used to predict errors in calculating elastic constants of cubic binary alloys. It
has been demonstrated that the machine learning techniques can predict DFT calculation error of elastic
constants with an acceptable accuracy. It also shows the BP neural network built by our proposed cross
validation algorithm can provide a better prediction. Our study is a first-invasive work of using machine
learning techniques to estimate the errors in calculating elastic constants of binary alloys.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

With the wide applications of DFT [1] in prediction of materials
properties, estimating error of the DFT calculation result (DFT
error) becomes increasingly urgent. The DFT calculation results
can provide references to plan future experiments or to find mate-
rials with desired properties. The databases currently being created
by high-throughput frameworks, such as AFLOW [2,3], Materials
Project [4,5] and MatCloud [6] are used for further intelligent data
mining. The automatic flow computation of high-throughput
makes the materials calculations easier and faster from ideas to
results. Using the DFT simulation data combined with machine
learning techniques, many research achievements have been
achieved in the prediction of material properties [7–9]. With the
material simulation data being widely used, the error of simulation
data becomes a concern. It is therefore essential to find an effective

method to assess the deviation between an individual DFT predic-
tion of a certain property and the corresponding experimental
measurement. Error estimations in DFT calculation are usually pro-
vided by statistical analysis methods [10,11], where the statistics
are used to represent the statistical error of the calculated materi-
als properties, such as standard deviation and confidence interval.

For an ab initio simulation package, the input parameters are
the main error sources for a prediction, and proper parameters set-
ting produces smaller error. Material property calculations using
DFT software packages integrated in high-throughput frameworks
depend on a large number of parameters, such as exchange-
correlation (XC) functional, pseudopotential, k-point grid density,
plan wave kinetic energy cut-off, convergence accuracy, and so
on. The exact XC functional is unknown [12], and all DFT calcula-
tions adopt approximated XC functional, which lead to inevitable
DFT error. Because of computational cost, finite basis sets are cho-
sen in practical DFT calculations, the inadequate basis sets are not
able to cover entire physical space and this inadequacy also intro-
duces inherent computational error. The parameters k-point, cut-
off and convergence accuracy can also introduce numerical DFT
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error. In DFT, calculations using different parameter values for k-
point, energy cut-off, XC functional and pseudopotential etc., yield
unidentical DFT errors. Due to the intrinsic complexity of DFT
codes it is impractical to carry out DFT calculations with the full
set of calculation parameters, and therefore it is also impractical
to investigate DFT error caused by each set of parameters through
DFT calculation. Finding a method to estimate the DFT calculation
error caused by each set of parameters is meaningful, which can
reduce the total DFT calculation time for finding proper parame-
ters. The set of parameters that produces minimum DFT error is
recommended to calculate material property in action.

Machine learning techniques and DFT simulation data of elastic
constants for materials have been applied to predict elastic proper-
ties of compounds or to design materials with maximal or minimal
elastic properties. Artificial neural network is employed to build a
prediction model of the mechanical properties of Cu–Sn–Pb–Zn–Ni
cast alloys using chemical compositions [13]. Gaussian Process
Model (GPM) and SVR are used to build models that predict elastic
properties in terms of elementary orbital radii of the individual
components of compound materials [14], and the initial training
data they used are calculated by DFT [15]. It can be seen that elastic
constants predicted by DFT calculations are increasingly used by
material researchers, therefore it is intelligible to determine justi-
fiable error estimations for elastic constants to obtain lower error
DFT predictions.

In this paper, we proposed to use a data-driven machine learn-
ing approach to estimate the DFT calculation error of elastic con-
stant of cubic binary alloy. Why chose elastic constant? In
general, some material properties such as elastic constant are clo-
sely related to the crystal structure, while somematerial properties
such as band structure and dielectric constant are closely related to
electronic-level information. In comparison to crystal information,
microscopic electronic-level information is usually hard to obtain.
Hence we chose elastic constant calculation in our case as an entry.

The approach is based on the following assumption. As a com-
pound is composed of pure elements, we think that elastic con-
stant calculation error of a compound could be deduced from the
elastic constant calculation errors of its comprising pure elements
(using same calculation parameters), and the crystal structure sim-
ilarities between this compound and its comprising pure elements.
We understand that for different materials, the systematic DFT
errors with different exchange-correlation functions are often sig-
nificantly different [16]. As the number of pure elements is limited,
the elastic constant calculation error of each pure element under
different calculation parameters can be easily obtained as follows:
(i) using high-throughput computing facilities (e.g. MatCloud) to
calculate the elastic constant under different combination of
parameters; (ii) collecting experiment value of elastic constant
from literature; (iii) working out the elastic constant calculation
error by comparing the calculation value and experiment value.

The procedures of the proposed approach are described as fol-
lows: (1) We collect experimental data of elastic constants for 45

binary alloys with cubic crystal system and 63 elemental metals
from literatures, which are used to compute the DFT errors for cor-
responding material, and then use MatCloud to calculate physical
properties for pure elements and binary alloys, which are used as
the predictors of the machine learning models; (2) We briefly
introduce two kinds of machine learning techniques, SLBPFN and
SVR, which are used to build regression models predicting error
of DFT calculation elastic constants caused by improper parame-
ters and functional; (3) Finally, based on the collected data set,
the SLBPFN and SVR techniques are used to construct prediction
models to estimate DFT errors of elastic constants for cubic binary
alloys without DFT code runs, and results by the two prediction
models are compared.

The remainder of this paper is organized as follows. In the Sec-
tion entitled Methods, we describe the data preparation for using
machine learning technique, and discuss two machine learning
methods as well as data set for building DFT error prediction
model. The next section focuses on the analysis of regression and
application performance of the proposed approach. We conclude
in Section 4.

2. Methods

2.1. Data preparation

Data preparation is a crucial stage in using machine learning.
The source and purpose of the collected data set are listed in
Table 1. The predictions of DFT error of elastic constants for binary
alloys are built from a data set consists of experimental elastic con-
stants of 45 binary alloys with cubic crystal system and 63 pure
elements, and predictors for the 45 binary alloys. The predictors
include elemental information, structure information and simple
physical properties of pure elements and binary alloy, and DFT
errors of elastic constants for associated pure elements. The predic-
tors of simple physical properties, such as volume and energy are
obtained from DFT calculations.

In the present work, DFT calculations are performed by the
VASP code [17,18]. The ion-electron interaction is described by
the projector-augmented wave (PAW) method. The used XC func-
tionals are depicted by the generalized gradient approximation
(GGA) parameterized by Perdew and Wang (PW91), Perdew Burke
Ernzerh (PBE), and Local Density Approximation (LDA). The sam-
pling values for VASP PREC tag are normal, high and accurate. The
PREC tag determines the energy cut-off, if (and only if) no value
is given for energy cut-off in calculation parameters file. For
PREC = normal and PREC = accurate, energy cut-off will be set to
the maximal energy cut-off value found in the functional file. For
PREC = high, energy cut-off is set to the maximal energy cut-off
value in the functional file plus 30%. We did a convergence test,
and found that when the total number of k-points (KPT) in the irre-
ducible Brillouin zone is set to 21,000, the DFT calculation results

Table 1
The data source and purpose of the collected data.

Data to be prepared Data source Purpose

Volume of 63 pure
elements

By calculation Used as predictors of machine learning model

Energy of 63 pure
elements

By calculation Used as predictors of machine learning model

Elastic constant of 63
pure elements

By calculation and collecting
experimental data

Used to work out the error of elastic constant calculation, which is used as predictors of machine learning
model

Energy of 45 binary
alloys

By calculation Used as predictors of machine learning model

Elastic constant of 45
binary alloys

By calculation and collecting
experimental data

Experimental data is used to calculate error of calculated elastic constants. Error of calculated elastic
constant is used as target variable of machine learning model
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