
Self-consistent charge and dipole density functional tight binding
method and application to carbon-based systems

Ying Wu ⇑, Adelina Ilie, Simon Crampin
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
Centre for Graphene Science, University of Bath, Bath BA2 7AY, United Kingdom

a r t i c l e i n f o

Article history:
Received 23 November 2016
Received in revised form 17 February 2017
Accepted 22 March 2017
Available online 14 April 2017

Keywords:
Dipole
DFTB
DFT
Tight-binding

a b s t r a c t

The density functional tight binding (DFTB) method is a fast, semi-empirical, total energy electronic
structure method based upon and parameterized to density functional theory (DFT). The standard self-
consistent charge (SCC) DFTB approximates the charge fluctuations in a system using a multipole expan-
sion truncated to the monopole term. For systems with asymmetric charge distributions, such as might
be induced by an applied external field, higher terms in the multipole expansion are likely to be impor-
tant. We have extended the formalism to include dipoles (SCCD), have implemented the method compu-
tationally, and test it by calculating the response of various carbon nanotubes and fullerenes to an applied
electric field. A comparison of polarizabilities with experimental data or more sophisticated DFT calcula-
tions indicates a substantial improvement over standard SCC-DFTB. We also discuss the issues surround-
ing parameterization of the new SCCD-DFTB scheme.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

To accurately calculate the electronic structure of solid state
materials, the density functional theory (DFT) has proven to be a
trustworthy method if used appropriately. However, for large sys-
tems DFT is increasingly expensive. For these systems, a much fas-
ter semi-empirical method based upon the DFT framework, density
functional tight binding (DFTB) method [1,2], can provide insight
into the physical properties with a balance of accuracy and effi-
ciency. First generation DFTB [1] approximates the total energy
as a sum of the eigenvalues of all occupied states (also known as
band structure energy) and a two-body repulsive energy, which
is fitted to full DFT results. With careful parametrization, this
method yields insightful structural and band structure results of
various systems [1] possessing relatively small charge redistribu-
tion. Elstner et al. [2] extended the method to accommodate sys-
tems with considerable charge redistribution by introducing a
charge fluctuation determined self-consistently to minimize the
total energy. This method, self-consistent-charge-DFTB (SCC-
DFTB), fundamentally enables the treatment of charge redistribu-
tion, and exhibits better results and transferability [2,3]. Further
extension of the DFTB framework are possible, e.g. as described
in Ref. [4].

Standard SCC-DFTB truncates the charge fluctuation around
each atom to the monopole term. For systems with significantly
asymmetrical charge distributions it is natural to consider achiev-
ing greater accuracy by extending the monopole approximation to
higher terms. Bodrog and Aradi [4] have proposed using tabulated
multipole interaction matrices and discussed formally some of the
consequences for computation of the Hamiltonian and total
energy. The specific method yielding the multipole interaction
matrix and the parameterization have not been presented, nor
implemented or applied. Motivated by a need to model with low
cost large-scale graphene/graphitic films under the influence of
external fields acting on the nanoscale, we develop the extension
of the standard second-order DFTB framework to dipole terms pro-
posed in Ref. [4]. We describe and implement a method to con-
struct and tabulate the multipole interaction matrix, discuss
parameterization issues, and validate and assess the dipole exten-
sion for carbon-based systems.

2. Self-consistent charge DFTB

First, we briefly summarize the theoretical background of
SCC-DFTB. From DFT theory and the Kohn-Sham ansatz [5], the
charge density nðrÞ in the SCC-DFTB scheme [2] is expressed as a
superposition of a reference density n0ðrÞ and small charge
fluctuation dnðrÞ. The total energy is
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where f k is the Fermi-Dirac occupation function of the state k, and

Wk is the corresponding single-particle wave function. bV ext

describes the nuclear potential acting on the electrons, bVH½n� is

the Hartree potential and bV xc½n� is the exchange-correlation poten-
tial. EH½n� is the Hartree energy, EII the nuclear-nuclear Coulomb
energy and Exc½n� the exchange-correlation energy. Writing the

Kohn-Sham Hamiltonian as bH ¼ bH0 þ bH � bH0

� �
, where bH0 refers

to the system of reference charge density n0, and expanding
Exc½n0 þ dn� as a Taylor series gives the energy to second order in
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The total energy comprises band structure energy EBS (first

term), second order energy E2nd (second term) and the repulsive
energy Erep (remainder). The repulsive energy Erep is approximately
expressed as a sum of pair potentials that are a function of the dis-

tance between atoms i and j; Vi;j
repðRÞ, the form of which is obtained

by fitting to full DFT calculations [1,2,6]
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X
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V i;j
repðRÞ ¼

X
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DFTðRÞ � Ei;j

elðRÞ
� �
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where Eel is the DFTB total energy without repulsive term. The band
structure energy contains no contribution from charge fluctuations,

with the Hamiltonian bH0 determined by the reference charge den-
sity n0ðrÞ, which in the DFTB scheme is constructed as a sum of
atomic charge densities. Correspondingly, single-particle wave func-
tions are expanded as linear combinations of atomic orbitals ulðrÞ,
WkðrÞ ¼

X
l
cklulðrÞ: ð4Þ

where ulðrÞ ¼ uaðr� RiÞ and composite index l ¼ ða; iÞ distin-
guishes orbital a on atom i at Ri. The band structure energy is
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Composite indices l ¼ ða; iÞ; m ¼ ðb; jÞ are used throughout the text
below.

The atomic orbitals ulðrÞ are determined by self-consistently
solving modified Kohn-Sham equations for an isolated confined
atom using DFT [5]:bT s þ Veff

i ½n�ðrÞ
h i

ulðrÞ ¼ �effl ulðrÞ; 8l ð6Þ

where the effective potential Veff
i ½n�ðrÞ

Veff
i ½n�ðrÞ ¼ Vext;iðrÞ þ VH½n�ðrÞ þ VLDA

xc ½n�ðrÞ þ ri
r0

� �N

; ð7Þ

additionally contains a confining potential introduced to improve
performance [7]. Vext;iðrÞ is the electrostatic potential from the ion
i, and ri ¼ jrij ¼ jr� Rij.

Following Ref. [1], the Hamiltonian matrix elements H0
lm are

evaluated using the two-center approximation

H0
lm ¼

�atoml l ¼ m

huljbT s þ Vi þ Vjjumi i– j

0 i ¼ j;l– m:

8><>: ð8Þ

Vi is the effective free atom potential of atom i given by the expres-
sion in Eq. (7) but without the confining potential. The diagonal
term �atoml is the energy eigenvalue obtained by solving Eq. (6) again
omitting the confining potential.

Regarding the second order energy in Eq. (2), if the local density
approximation (LDA) is used for exchange-correlation contribu-
tions, then these vanish when r – r0. Ignoring the on-site term of
the exchange-correlation contributions, then only the electrostatic
interaction from charge fluctuations remain. The fluctuation dnðrÞ
can be partitioned into atom-centered contributions
dnðrÞ ¼PidniðriÞ, each expressed as a superposition of multipole
densities dniðrÞ ¼

P
‘qiðrÞ½DQ ‘�, where ‘ is the number denoting

the rank of the Cartesian multipole.1 The multipole densities them-
selves qiðrÞ½DQ ‘� can be expressed in terms of a standard normalized
isotropic density qiso

i ðrÞ scaled by the multipole moment DQ ‘. For
example, dipole densities can be constructed from qiso

i ðrÞ in an anal-
ogous manner to how a standard dipole can be constructed from
opposing point charges.

Standard SCC-DFTB uses the monopole approximation, in which
the expansion of the density fluctuation only includes the charge
difference

dniðrÞ � qiðrÞ½Dqi� ¼ Dqiqiso
i ðrÞ: ð9Þ

Then E2nd becomes
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Analytical forms such as those based upon normalized Gaussian

or exponential-decay distributions qiso
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where Rij ¼ jRi � Rjj. The on-site value Ĉ00
ii is directly related to ri

(si), meaning the parameter can be obtained from Ĉ00
ii which can

be approximated by the difference of ionization energy Ii and elec-

tron affinity Ai of the atom, or the Hubbard U [3]: Ĉ00
ii ¼ Ui � Ii � Ai.

1 For example, Q1 denotes the dipole moment made from px; py and pz
components.
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