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a b s t r a c t

A complete and rigorously validated open-source Python framework to automate point defect calcula-
tions using density functional theory has been developed. The framework provides an effective and effi-
cient method for defect structure generation, and creation of simple yet customizable workflows to
analyze defect calculations. The package provides the capability to compute widely-accepted correction
schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction,
and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demon-
strate the package capabilities and validate the methodology.

Published by Elsevier B.V.

1. Introduction

In semiconductor materials, point defects play a vital role in
determining their properties and performance, particularly in
microelectronics [1], optoelectronics [2], and thermoelectrics [3]
related applications. The dominant point defects and their concen-
trations are determined from the defect formation energies, which
can be predicted with reasonable accuracy [4] using first-principles
methods such as density functional theory (DFT). Therefore, com-
putational modeling of point defects is increasingly becoming an
indispensable tool to understand and predict behavior of semicon-
ductors [5–7]. Modern approaches to point defect calculations uses
DFT and are typically based on the supercell approach [6,7]. With
the goal of accelerating the design and discovery of materials by
large-scale deployment of defect calculations, we have developed
a computational framework (Fig. 1) to automate supercell-based
point defect calculations with DFT. Our approach successfully
addresses two main challenges of automating point defect calcula-
tions: (1) generation of defects structures including vacancies, sub-
stitutional defects and interstitials, and (2) application of the
finite-size and band gap corrections.

In the context of structure generation, creating supercells with
vacancies and substitutional defects is relatively straightforward.
In contrast, identifying likely locations of interstitials is much more
challenging because of the large number of interstitialcy sites,

especially in complex, multinary systems. In addition, interstitials
might adopt complex configurations, including the split or dumb-
bell where the interstitial is associated with a off-site lattice atom.
To address these challenges, we have developed an efficient
scheme based on Voronoi tessellation; [8] the scheme considers
corners, edge and face centers of the Voronoi polyhedra as likely
sites for interstitials. We demonstrate that, upon relaxing the
structure, this scheme successfully discovers both the symmetric
and general Wyckoff positions as well as the split interstitial con-
figurations. Our implementation of this scheme is independent of
pymatgen [9] where Voronoi tessellation is also employed. Here
we will discuss the algorithm in detail and validate the Voronoi-
driven approach to identify interstitial sites.

Within the supercell approach to calculate the defect formation
energies, finite-size artifacts need to be removed using carefully
designed correction schemes. We have implemented tools to cal-
culate the following finite-size corrections: (1) potential align-
ment, (2) image-charge correction, and (3) band filling correction
to address Moss-Burstein-type effects. We follow the widely used
and tested approach of Lany and Zunger [10,11] out of the several
others that addresses the same issues [12–16]. However, the auto-
mated framework is highly modular so that other correction
schemes can be easily implemented including computation of
defect formation energies using series of supercell sizes in order
to extrapolate the values to the infinitely large supercell. In addi-
tion, the framework employs fitted elemental-phase reference
energies (FERE) [17,18] to compute elemental chemical potentials,
which have been shown to provide accurate predictions of thermo-
dynamic phase stability.
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Beyond the finite-size effects, another source of inaccuracy
arises from the well-known DFT band gap problem. Accurate band
gaps are needed to correctly describe the formation energy of
charged defects as a function of the electronic chemical potential
i.e., Fermi energy. We employ state-of-the-art GW quasiparticle
energy calculations [19] to compute band edge shifts (relative to
the DFT-computed band edges). The band edge shifts are used to
correct the defect formation energy in multiple charge states. The
automated framework is also capable of performing defect calcula-
tions with DFT hybrid functionals [20,21]. However, supercell
defects calculations with hybrid functionals have sources of uncer-
tainty arising from the choice of input parameters (e.g. fraction of
exchange) and have considerable computational overheads [22].
Therefore, we have implemented a DFT+GW approach for calculat-
ing defect formation energy that has been shown to be as accurate
as calculations with hybrid functionals [22].

Finally, we illustrate and validate the automated computational
framework by considering the set of three well-studied semicon-
ductor materials, Si, ZnO, and In2O3 with a total of 17 unique inter-
stitial and vacancy structures in multiple charged states. We show
that our results on defect formation energies and charge defect
transition levels in Si, ZnO and In2O3 agree well with the literature.
The framework successfully identifies the known intrinsic intersti-
tial and vacancy structures in Si, ZnO and In2O3. In addition, it dis-
covers interstitial structures in In2O3, with formation energies
�0.5 eV above that of previously known interstitial structures.

2. Overview of the automated defect framework

Fig. 2(a) presents a workflow of the automated framework,
including generation of defect structures, relaxation of defect
supercells within DFT using the PyLada framework [23], and deter-
mination of finite-size and band gap corrections to compute the
defect formation energies. In this section, we describe each compo-
nent of the framework and provided technical details. The latest
version of the package can be downloaded from GitHub repository
at https://github.com/pylada/pylada-defects.

2.1. Generate defect structures

The workflow takes the fully-relaxed primitive cell as an input
to create supercells. To create a vacancy or substitutional defect
in supercell, the occupied Wyckoff positions (lattice-sites) for all
atom types in the supercell are identified. Then the corresponding
atom is removed or substituted with an impurity atom, to generate
vacancy or substitutional defect. Finally, the first nearest-neighbor
atoms to the vacancy or substitutional site are randomly displaced
(�0.1 Å) to break the underlying site symmetry and thereby,
ensuring the non-symmetric configurations of the defects are
properly captured. The Voronoi tesselation [8,24], scheme is
employed to identify likely interstitial sites. Voronoi region is the
volume that encloses the points p closest to a given lattice site Pi

than to any other lattice site Pj for i; j 2 In ¼ f1; . . . ;ng. Mathemat-
ically, it is defined as [8]

VðPiÞ ¼ fpjdðp; PiÞ 6 dðp; PjÞg for j – i; j 2 In ð1Þ
where VðPiÞ is the Voronoi region associated with Pi, and dðp; PiÞ
specifies the minimum distance between a general point p and Pi.
To create an interstitial, Voronoi regions (Eq. (1)) are computed
across each occupied Wyckoff positions, and symmetry inequiva-
lent vertices, face, and edge centers of the Voronoi regions are cho-
sen as the candidate sites for the interstitials. The number of
candidate interstitial sites depends on the symmetry of the crystal
structure. The lower the symmetry and the more complex the crys-
tal structure, the larger the number of sites. For example, in In2O3

(space group Ia-3, 40 atoms in primitive cell), we find that some
of the faces of the Voronoi region are very small, resulting in sam-
pled interstitial sites very close to each other. Therefore a minimum
tolerance of 0.5 Å is used while determining symmetry inequivalent
sites. The procedure is described in Fig. 2(b), with ZnO as an exam-
ple structure.

2.2. Perform defect calculations

As summarized in Fig. 2(a), the workflow starts with fully relax-
ing (volume, cell shape and ionic positions) the bulk primitive cell.
Dielectric constant, and GW calculations are performed on the
relaxed primitive cell. Point defects are then created in the bulk
supercell followed by relaxation (only ionic positions) of defect
structures in multiple charge states. Defect calculations are aimed
to use supercell sizes that are large enough to describe individual
defects as accurately as possible by minimizing the error due to
defect-defect interactions. It has been shown that these interac-
tions are short-ranged and typically occur within the distance of
5–10 Å, from the defect center [7]. Therefore in this work, supercell
sizes are chosen such that spacing between defect and its periodic
images are greater than 10 Å, and sizes are not too large to make
them intractable for DFT calculations. Calculations of interstitial
defects are performed in two steps: (1) All candidate interstitials
(shown as starting interstitials in Fig. 3) are relaxed in the neutral
charge state, (2) followed by relaxation of only unique interstitials
(shown as final interstitials in Fig. 3) in multiple charge states.
Unique interstitial structures are determined based on: (1) the
total energy, (2) space group, and (3) the number of neighboring
atoms. The high-throughput DFT calculations are performed using
PyLada [23], a Python framework for the organizing and managing
high-throughput first-principles calculations. PyLada also offers
variety of useful tools for manipulating crystal structures, extract-
ing output from successfully finishes calculations, as well as
archiving and analyzing results [25–27]. Finally, the defect forma-
tion energies are computed as discussed in the next section.

2.3. Compute defect formation energy

The formation energy of the defect D in the charge state q is cal-
culated as

DHD; qðEF ;lÞ ¼ ½ED;q � EH� þ
X
i

nili þ qEF þ Ecorr ð2Þ

where ED;q and EH are the total DFT energies of the defect and host
supercell, respectively. li is the chemical potential of the atom (host
or impurity) of type i added (ni < 0) or removed (ni > 0) from the
host supercell to form the defect. EF is the Fermi energy, and Ecorr

is the term that account for the finite-size corrections, within the
supercell approach. A schematic of Eq. (2), representing computa-
tion of the defect formation energy from supercell to the dilute limit
is shown in Fig. 4.
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Fig. 1. Three key components of the computational framework to automate point
defect calculations.
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