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a b s t r a c t

The propagation of axial stress waves in Boron-Nitride nanotubes of different chirality and length under
adiabatic conditions has been studied using molecular dynamics (MD) simulations. The velocities of the
axial stress waves are found using three methods - (i) direct MD simulations, (ii) harmonic approximation
of the nanotubes, and (iii) one-dimensional (1-D) wave equation. The MD simulation results indicate a
small dependence of the wave velocities on the nanotube chirality and the excitation frequency – in arm-
chair and zigzag nanotubes waves travel faster than that in chiral nanotubes, and wave velocities
decrease with an increase in the frequency of excitation. The wave speed obtained from the harmonic
approximations is � 20—25% higher than that found from the MD simulations. Likewise, the frequencies
of vibrations from the two approaches differ by 15–20% for most of the cases. The computation of the
wave speed from 1-D equation requires a prior knowledge of the elastic modulus and the nanotube wall
thickness. The values of these parameters are found from MD simulation results – axial tensile tests pro-
vide an estimate of the wall thickness scaled elastic modulus and the transverse vibration data relates the
standard deviation of the tip displacement with material properties of the nanotube. The wave speed pre-
dicted from the 1-D wave equation agrees with that obtained from the MD simulations at low excitation
frequencies. The contribution of the anharmonicity to the dynamics during wave propagation is found by
matching the response of the anharmonic Fermi-Pasta-Ulam chain with the MD simulation results.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of nanotubes, both Boron-Nitride (BNNT) and
Carbon (CNT), has been one of the most promising findings in nan-
otechnology. These nanotubes possess exceptional specific
mechanical strength [1,2], chemical properties [3], thermal stabil-
ity [4] and electronic properties [5]. Experimental investigations
with electric field induced resonance [6], X-ray scattering mea-
surements [7] and bending tests using high-resolution transmis-
sion electron microscope [8] have revealed that Young’s modulus
of a BNNT is �722 GPa to 1.22 TPa, orders of magnitude higher
than that of steel when the mass density is considered.

By using different analytical and simulation tools – classical
molecular dynamics (MD) [9–13], ab initio [14] and tight-binding
[15] MD, and first principles based study [16], it has been found
that the elastic and the shear moduli of BNNTs depend upon their
chirality and aspect ratio [17]. The chirality also significantly influ-
ences the torsional response of the nanotubes. The MD studies
indicate that BNNTs are thermally stable up to �3700 K [9]. Thus
BNNTs have been used in several interesting applications such as

protective shields for nanomaterials [18], adsorption of gases
[19], hydrogen storage [20], water purification [21] and nanome-
chanical sensors [22].

While the aforementioned computational methods are power-
ful, they require large computational resources. Researchers have,
therefore, used structural mechanics and combined finite-
element modeling to develop the atomic scale finite-element mod-
els (AFEM) [23,24]. Utilizing AFEM, Tao et al. [25] studied elastic
properties of BNNTs, and evaluated buckling characteristics and
Young’s modulus by assuming the wall thickness of 0.34 nm. The
stiffness matrix was formed by numerically displacing the atoms
from their equilibrium positions. Similarly, Giannopoulos et al.
[26,27] investigated the free vibration response of BNNTs and the
tensile fracture behavior of Boron-Nitride nanoribbons along with
the boundary conditions, the length and the diameter dependence
of elastic properties, assuming the wall thickness to be 0.333 nm.
Chowdhury et al. [28] used molecular mechanics (MM) simula-
tions for finding optimized structures of BNNTs and their vibra-
tional behaviors. Using the Euler-Bernoulli beam theory and MM,
Chowdhury and Adhikari [29] modeled BNNT resonators. Jiang
and Guo [30] developed an analytical model using MM to evaluate
the size dependent elastic properties of BNNTs. The development
of these models has enabled the bridging of scales through
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equivalent continuum structures (ECSs) [31]. However, the under-
standing of the BNNTs deformations significantly depends on the
assumed material properties like the wall thickness and Poisson’s
ratio [28,32,33]. For example, the wall thickness of the nanotubes
has been assumed to vary from 0.065 nm [33] to 0.34 nm [23].
Likewise, the Poisson’s ratio varies from being negative [34] to pos-
itive [35]. It must be noted that MM and other related techniques
do not account for thermal fluctuations present in the nanotube.

Bridging the nano- and the continuum scales in an ECS requires
an in-depth analysis of differences in behaviors of the nano- and
the continuummodels. Here we focus on studying the propagation
of axial stress waves in BNNTs. While the propagation of thermal
waves has been extensively studied [36,37], only a few studies
exist regarding the propagation of stress waves in BNNTs. Stress
waves have been found to fracture nanotubes under excessive ten-
sile loadings upon the release of the accumulated elastic energy
[38]. In this work, the stress wave propagation results from MD
simulations are compared with those obtained from the harmonic
approximations (HAs). The method of obtaining the HA equivalent
structure is similar to that of the AFEM from the MM. Specifically,
the speed of the axial stress waves and the frequencies of vibration
are compared to assess the suitability of the HAs in solving nanos-
cale problems. While the wave speeds through MD simulations
show frequency dependence, they are frequency-independent
from the HAs. Additionally, the wave speeds and frequencies are
found to vary by 15–25%. The contribution of the anharmonicity
to the dynamics is �20%, obtained by matching the response of
an anharmonic Fermi-Pasta-Ulam chain with that from the MD
simulations. Results of transverse vibrations and axial tensile tests
are utilized to find the wall thickness and the elastic modulus of
the BNNTs by handshaking MD results with the vibration proper-
ties of a beam. Using these thickness and elastic modulus values,
the wave speed obtained from the continuum 1-D wave equation
is found to agree well with that from the MD simulations at low
excitation frequencies.

2. Simulations and analysis

2.1. Modeling the system

A BNNT may be imagined to be obtained by rolling a hexagonal
Boron-Nitride sheet comprised of hexagonal rings in which every
Boron atom is covalently bonded to three other Nitrogen atoms
(and vice versa), with the nearest BN bond length, a = 1.4457 Å
[39]. A typical BNNT is characterized by three parameters - the
length (l), and the chiral indices (n;m) that determine the rolling
direction of the hexagonal sheet. The diameter, D, and the chiral
angle, h, of a nanotube in terms of the chiral indices are given by:

D ¼ a
p
�
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Depending upon values of m and n, one gets three different types of
nanotubes: (i) m ¼ n gives an armchair nanotube, (ii) m ¼ 0; n > 0
gives a zigzag nanotube, and (iii) 0 < m < n gives a chiral nanotube.
It is evident that the chiral angle h is in the range ½0;30��. Nanotubes
of 4 different chiralities: ð10;10Þ; ð12;8Þ; ð15;4Þ and (17,0), and
three different lengths, l ¼ 70 nm;140 nm and 210 nm, have been
investigated in this study. The nanotubes have been chosen such
that each has D � 1:38 nm. The three different lengths help us iden-
tify essential features of the stress wave propagation, and the inter-
action between the incident and the reflected waves. The atoms of
an BNNT interact with each other through the three-body Tersoff

type potential [40]. Details of the potential function are given in
Ref. [41]. Several different Tersoff parameters have been proposed
for the Boron-Nitride interactions. Here, values of parameters given
by Sevik et al. [41] that have been shown to provide good agree-
ment between experimental and computational results are used.

All MD simulations have been performed by using the open-
source software, LAMMPS [42]. The simulation begins with a con-
jugate gradient energy minimization. The simulation domain is
then divided into three regions along the axial (z) direction - the
1 nm long leftmost region, the 1 nm long rightmost region, and
the middle region comprised of the rest of the nanotube. Only
the rightmost region is kept fixed for the remainder of the simula-
tions. Subsequently, the MD simulations are conducted at the con-
stant temperature of 0.01 K using the Langevin thermostat for
40,000 time steps with an integration time-step of 1.0 fs.

2.2. Computing wave speeds from MD simulations

A stress wave is imposed on the nanotube by axially displacing
atoms of the leftmost region in a sinusoidal manner:

z tð Þ ¼ z 0ð Þ þ 0:5 sin xf t
� �

; ð3Þ

and the frequencyxf is varied systematically from 0.5 THz to 5 THz
in 10 simulation runs. The boundary conditions imposed at the two
end faces of the BNNT are shown in Fig. 1. While atoms on the right-
most boundary are kept fixed, those on the leftmost boundary are
allowed to move only in the axial direction. As mentioned above,
atoms in the middle region are un-constrained. Furthermore, the
Langevin thermostat is removed and simulations are performed at
a constant energy ensemble.

The displacement is imposed for 600,000 time steps where each
integration time step equals 0.1 fs. In order to compute the wave
speeds, we find the distance through which the first peak of the
wave propagates since the beginning of the simulation by closely
studying snapshots of the wave at 10 different times. If the dis-
tance travelled by the wave in time tk is dk, then the average wave
speed is computed as:

hci ¼
P10

k¼2
dðtkÞ�dðt1Þ

tk�t1

9
: ð4Þ

The entire procedure is shown in Fig. 2. Alternatively, the speed
may be obtained from the time at which the wave crosses a fixed
location of the nanotube [43].

2.3. Wave speed using the harmonic approximations

At very low temperatures, the dynamics of the nanotubes is
harmonic [44]. We thus numerically compute the Hessian matrix.
As schematically shown in Fig. 3, for the post minimization and
equilibration runs, each ring of a nanotube is treated as a single
particle with its z-coordinate equal to the axial location of the ring.
The boundary conditions considered are the same as those shown
in Fig. 1. The distance between two adjacent particles is
� 0:125 nm. Thus, for a 70 nm long nanotube there are 560 parti-
cles. A particle is first displaced by D ¼ 0:001 nm in the positive z
direction, and forces on all particles are computed. Similarly, the
particle is displaced by �D along the z direction and the resulting
forces are obtained. Stiffness terms are then computed using the
relation:

Kij ¼ � FijðDÞ � Fijð�DÞ
2D

; ð5Þ

where Fij denotes the force on the equivalent particle j when the
particle i is displaced. To ensure real eigenvalues, the matrix ½K� is
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