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a b s t r a c t

A new approach to obtaining fundamental characteristics of solids is provided. The key element of this
approach is related to solving the inverse problem of how to reconstruct phonon density of states g(x)
from low-temperature heat capacity. The original method for numerical solution of this problem allows
to calculate the g(x) dependence with correct description of its shape and correct proportion of the num-
ber of vibrational modes in different frequency intervals. This allows to accurately calculate the moments
of the g(x) and related characteristic temperatures which, being constants, unambiguously describe indi-
vidual substance. Also this allows to calculate a zero-point energy of crystal with high accuracy. This, in
turn, opens up the possibility for calculating the full internal energy of a solid. The knowledge of the g(x)
allows calculating the isochoric thermodynamic functions in the entire region of existence of solid phase.
Special attention is paid to the estimation of the accuracy of the characteristics obtained. The capacities of
the approach are demonstrated on a model object and a real-world object, the latter is represented by a
single-crystal lithium molybdate. The described approach is universal and opens up new possibilities for
studying solids. The proposed computer algorithm can be used to numerical solve other types of inverse
problems that include the integrated form.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Development of new methods for defining properties of sub-
stances based on their key characteristics has always been and
remains an important element in the research methodology.
Therewith, it is important to consider key characteristics that can
be obtained experimentally with high accuracy. The low-
temperature heat capacity of solid is among such characteristics.
State-of-art setups allow measuring the heat capacity within the
range of helium to room temperatures with the accuracy that
can be at the level of 0.1% including both a systematic and an acci-
dental error. It is known that it is adiabatic method [1] that allows
such accuracy [2] of data received in wide range of low tempera-
tures. Reference documents present a method [3,4] that may be
applied to receive thermal properties of nanoparticles. Study of
nanoscale and massive objects and comparison of their thermal
and vibrational properties is of interest, since it may provide a
more detailed understanding of the nature behind emergence of
new properties in nanosystems [5].

The knowledge of the temperature dependence of heat capacity
is the starting point in calculating energy, entropy, and other
important characteristics of solids. In general, when considering
the energy of solids, we deal with a system, which is composed
of lattice, electronic, and magnetic subsystems. However, when
considering a wide range of temperatures, the main and decisive
contribution to the energy of solids is made by nuclear vibrations.
These vibrations are described well within the phonon formalism
taking into account their quantum-statistical distribution, which
determines a decrease in the heat capacity to zero at low temper-
atures and is an inherent property of all solids.

The heat capacity is associated in a known manner with the
phonon density of states, which, being a bridge between the micro-
scopic and macroscopic properties of the substance, belongs to the
fundamental characteristics of solids. The existing problem (that
has not been fully solved so far) is related to the solution of the
inverse problem of the Bose system spectrum reconstruction based
on its heat capacity [6]. The urgency of solving this problem is
quite obvious, since this will provide a new tool for obtaining infor-
mation about the major characteristics of solids. Furthermore, its
solution can be potentially used to solve other types of inverse
problems that include the integrated form.

In this paper, we bridge the gap by providing a new and original
method for numerical solution of the inverse problem concerning
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the reconstruction of the phonon density of states g(x) based on
the data on the low-temperature heat capacity. The possibility to
obtain a number of fundamental characteristics of a solid (the den-
sity of states, moments of the g(x) spectrum, zero-point energy,
etc.) is demonstrated. The ability to obtain and the accuracy of
these characteristics are demonstrated on a model object and a
real-world object. For the real-world object a single-crystal lithium
molybdate (Li2MoO4) is taken.

2. Heat capacity and phonon density of states

It is well known that the data on temperature dependence of
heat capacity allows calculating a number of phonon spectrum
characteristics. Thus, it is possible to obtain quantitative informa-
tion about the acoustic branch of the crystal lattice vibrations from
the lattice component of the heat capacity in the low-temperature
region (see, e.g., [7,8]). In addition, the cut-off frequency of the
crystal vibrational spectrum can be calculated or evaluated from
the heat capacity. Such capacity is commonly associated with the
description of the heat capacity within some model representa-
tions of g(x) spectrum, among which the Einstein [9], Debye [10]
and Tarasov [11] models, or their combinations (e.g., [12]), are
often used. Even moments of the phonon density of states g(x)
and the effective cut-off frequency can also be calculated from
the heat capacity by the method based on high-temperature
expansion of the heat capacity [13].

The heat capacity CV(T) in the harmonic approximation is
related to the phonon density of states g(x) by the following
expression:

CV ðTÞ ¼ 3NkB
Z 1

0
gðxÞWðx; TÞdx ð1Þ

where

WðxÞ ¼ x2e�x

ð1� e�xÞ2
; x ¼ �hx

kBT
;

and where W(x) is the Einstein function, N – the number of atoms,
kB – Boltzmann constant, ⁄ – Planck’s constant. Function g(x) in
expression (1) is normalized to unity:
Z 1

0
gðxÞdx ¼ 1 ð2Þ

In paper [6], the existence of solution (but not the solution
itself) of the inverse problem aimed at finding the unknown subin-
tegral function g(x) in Eq. (1), when the left-hand side of this equa-
tion is known, was shown for the first time. A number of attempts
have been made to find a simple solution to this inverse problem
[14–18]. However, no method that would allow practical imple-
mentation of solution to this problem for a wide range of objects
has been provided in the literature so far. It appears that the
method [19,20] proposed by us can be implemented in a fairly
straightforward manner, has a number of undeniable advantages
and is adapted for studying important characteristics of solids.

To solve the inverse problem, we rely upon the knowledge of
the isochoric heat capacity in a wide range of low temperatures.
It is apparent that, in this case, the reconstructed density of states
g(x) according to Eq. (1) will characterize the excitation spectrum
of the ground state of crystal lattice, i.e. the excitation spectrum at
zero temperature.

For all solids heat capacity at constant pressure Cp(T) and at
constant volume CV(T) below a certain temperature are character-
ized by a negligible value. The difference between Cp(T) and CV(T)
can be within the experimental uncertainty limits up to the tem-
peratures at which the entropy of the solid has maximum gain.
Therefore, to solve the problem can be used experimentally

obtained data on the heat capacity Cp(T). If electronic, magnetic,
and other components are present in the experimental heat capac-
ity, it is necessary to give correct consideration for these compo-
nents in separating the phonon heat capacity.

3. Phonon density of states calculation

The phonon density of states calculation includes three steps. At
the first step a zero approximation g0(x) is chosen that correctly
describes the behavior of g(x) at low and cut-off frequencies. The
choice of g0(x) is made so that it describes well the asymptotic
behavior of heat capacity (at T? 0 and T?1), but the description
for medium temperatures is not satisfactory. Selection of the g0(x)
can be implemented by different methods; however, as noted in
paper [20], it is essential to take into account the behavior of g
(x) at the asymptotic upper bound, i.e. when the heat capacity is
well described at high temperatures (above the point of inflection
of the heat capacity curve) when selecting the cut-off frequencyxc.
Note that introducing the cut-off frequency is the most important
element since it reduces the degree of incorrectness of the problem
being solved and significantly reduces the solution uncertainty.

At the second step, the zero approximation is refined by an iter-
ative process, where the number of vibration modes is redis-
tributed over frequencies. By changing the shape of zero
approximation of the density of states, such redistribution of vibra-
tion modes ultimately reduces the difference between the calcu-
lated and the experimental heat capacities in middle
temperature region. The iterative process continues until the dif-
ference in heat capacities drops below the pre-specified value. In
our case, this value is experimental uncertainty of measuring heat
capacity.

At the third step, a number of calculations with different values
of zero approximation parameters and/or iterative process param-
eters are averaged. The averaging procedure significantly reduces
the random component, which is present in each individual solu-
tion. Firstly, this results in a more accurate description of the den-
sity of states g(x), and, secondly, this allows us to observe and
estimate the degree of uncertainty of the solution we obtain.

While various solutions were obtained with different frequency
subintervals in paper [20], we obtain a series of solutions with
equal subintervals through using different algorithms for iterative
process implementation in the current paper. This allows obtaining
a series of solutions that reproducibly describe the basic spectrum
shape, being different in details only. Note that the use of the same
frequency subintervals to obtain a series of solutions considerably
simplifies the entire calculation procedure and allows determining
the averaged values of the g(x) spectrum and their uncertainties
with higher accuracy.

3.1. Choosing zero approximation

We used zero approximation g0(x) which has a constant den-
sity of modes over the whole frequency range below the cut-off
frequency to calculate the phonon density of states. This kind of
spectrum was first considered in the paper published by Tarasov
[11]. Note that we do not use the low-frequency asymptotic of
the phonon density of states when selecting g0(x). The feasibility
of this is related to the fact that we obtain the same computational
procedure for g(x) reconstruction in the entire frequency interval,
from 0 to xc, which considerably simplifies the problem-solving
algorithm. Moreover, the use of such zero approximation g0(x)
can be justified by the asymptotically unambiguous determination
of the density of states g(x) within the range of low frequencies by
the CV(T) dependence [21]. As follows from [21], at small values of
⁄x/(kBT), the phonon density of states is proportional to the deriva-
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