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a b s t r a c t

Effective initial sampling plays an important role in capturing key details about the energy surfaces of
multi-component, multi-sublattice phases for the purposes of accurate convergence toward the global
minimum energy configuration of a given system. It is shown that, when using the appropriate statistical
distribution, both quasi-random and pseudo-random sampling methods compare well with the standard
uniform grid-based technique. Moreover, the combination of random sampling with uniform grid points,
while maintaining sampling performance for equilibrium calculations in the Al-Co-Cr system, signifi-
cantly increases performance for a fictive 10-component system.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Miscibility gap detection is a crucial feature in thermodynamic
calculation software to accurately calculate the energy of phases
containing regions of compositional instability and is commonly
handled through global minimization (GM) of the Gibbs energy.
The cause of miscibility gaps in non-ideal solutions is the presence
of energetically unfavorable interactions between components
that overwhelm the entropically-driven ideal mixing contribution
to the Gibbs energy.

To fix notations, let Gi represent the molar Gibbs energy of a
particular phase i within the system, with i ¼ 1; . . . ;K. Further-

more, assume that T is temperature, P is pressure, f i is the fraction
of phase i and yik;j is the site occupation fraction of component j in

sublattice k of phase i. In vector form, let y!¼ fyik;jg
i¼1;...;K

j¼1;...;J;k¼1;...;Mi
,

where K stands for the total number of phases, J for the total num-
ber of system components and Mi for the number of sublattices in

phase i. Similarly, denote f
!¼ ff ig for all i ¼ 1; . . . ;K.

The isothermal-isobaric total molar Gibbs energy minimization
problem for a closed system can be stated in the following
way:

min
f
!

; y!
GmðT; P; f

!
; y!Þ ¼

X
i

f iGiðT; P; y!Þ
 !

ð1Þ

s:t: cnðT; P; f i; y!Þ ¼ 0 ð2Þ
where cn;n ¼ 1; . . . ;C represent all possible equality constraints
including mass balance constraint. Sublattice site fractions are
related to mole fractions by the relation

xij ¼
P

kbkyik;jP
kbkð1� yik;VaÞ

; ð3Þ

where bk is the number of sites on sublattice k and yik;Va is the frac-
tion of vacancies on sublattice k.

Site fraction balance constraints,
P

ky
i
k;j � 1 ¼ 0, are always pre-

sent for each sublattice. This problem is equivalent to solving the
following unconstrained minimization problem for the Lagrangian
L:

min
f
!

; y!
LðT; P; f!; y!; k

!Þ ¼ GmðT; P; f
!
; y!Þ �

XC
n¼1

kncnðT; P; f
!
; y!Þ

 !
;

ð4Þ

where the notation k
!¼ fkngn¼1;...;C is used for the vector of Lagrange

multipliers. The Lagrangian is closely related to the thermodynamic
driving force function by the equality of the chemical potentials to
the values of kn for the mass balance constraints. For further details,
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Fig. 1. Two Al-Co-Cr metastable phase diagrams, including only the bcc phase, are shown at 1523 K. Using the default settings in Thermo-Calc version 2015a, an incorrect
diagram missing the ternary miscibility gap is produced (a). Increasing the global minimization point density or explicitly adding equilibrium points in the miscibility gap
region produces the correct metastable diagram (b).

Fig. 2. The Al-Co (a, b) and Co-Cr (c, d) systems are shown with their internal energy surfaces (a, c) and those configurations mapped to the overall composition space (b, d).
Multiple internal configurations map to the same overall composition, but only the low-energy configurations are relevant to equilibrium. For the Al-Co system, low-energy
configurations are located at the Al:Co and Co:Al end-members, corresponding to the ordered bcc configuration of the phase near 50% Al. Due to crystallographic symmetry,
Al:Co and Co:Al have the same energy, but this is not a requirement of sublattice models in the general case. The disordered bcc configuration, corresponding to the black
dashed line across the diagonal, has higher energy in the composition region near 50% Al. Conversely, in the Co-Cr system, the ordered B2 end-members Co:Cr and Cr:Co are
both much higher in energy than the disordered configuration of the same overall compositions, and that this holds true everywhere in that system at this temperature. This
means B2 will not be observed at that temperature. The Al-Cr system (not shown) has a similar energy surface to the Co-Cr system.
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