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a b s t r a c t

A variant of quasi-Newton geometry optimization in Cartesian coordinates for atomistic calculations is
proposed. Like other schemes, it starts from an approximate Hessian diagonal in redundant internal coor-
dinates (bond lengthes, bond angles) which is improved by Broyden-Fletcher-Goldfarb-Shanno (BFGS)
updates. The key idea is to parameterize the diagonal elements of the starting Hessian on the fly. By auto-
matically classifying all interatomic bonds according to bond length and elements involved, and treating
all similar bonds equal, one arrives at a very small number of parameters that can be determined from
few displacements, often only one. The superior performance for supercell calculations compared to a
standard Cartesian-coordinate optimizer is demonstrated.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Geometry optimization, i.e., determining the (local) energy
minimum of a given system of atoms by varying the atomic coor-
dinates, is an essential and recurring task ever since the early days
of atomistic calculations (see [1] for a recent review, and references
therein). From a very abstract point of view, this is a non-linear
minimization problem in a 3N-dimensional space, where N is the
number of atoms. For such a non-linear minimization, there are
many general-purpose iterative schemes available [2]. Each
scheme probes the energy EðfRIgÞ for a given configuration (atomic
positions) fRIg and possibly its first, second, etc. derivatives with
respect to atomic positions. It then proposes from the data
acquired so far a new configuration to probe until the change in
energy and/or the forces fall below a given threshold. The schemes
differ in the required input data: For instance, the downhill-
simplex method [3] only requires the energy. Gradient-based
schemes are steepest descent, conjugate-gradient [4,5], direct
inversion in the iterative subspace (DIIS) [6,7] or other Krylov sub-
space methods. Last, Newton or quasi-Newton schemes also
require the second derivative (or an approximation to it). The
schemes further differ in their robustness against numerical noise,
in their memory demands for the implementation, and last, but
certainly not least in their efficiency in arriving at the desired min-
imum. The calculation of the energy, as well as its first and possibly
second derivative with respect to the atomic coordinates can be
computationally very demanding. Of course, this depends on the

underlying theory for the potential energy surface, e.g., empirical
interatomic potentials, semi-empirical electronic structure theory,
tight-binding [8], bond-order potentials [9], density-functional
theory (DFT) or other variants of ab initio electronic structure the-
ory. It is therefore desirable to employ efficient methods that use a
minimal number of steps, possibly exploiting additional physical
and chemical knowledge that is not available to general-purpose
minimizers. Some of the most common minimizers have been
recently benchmarked [10].

The focus in this work is on local minimum searches in density-
functional theory calculations with periodic boundary conditions.
Such calculations are routinely employed in solid-state research,
with typically up to several hundred or even a few thousand atoms.
In this case, memory and computational demands for the geometry
optimization are negligible compared to the underlying calcula-
tion. Forces f I ¼ �@E=@RI are readily available, while analytic sec-
ond derivatives are prohibitive compared to the advantage that
they may have. A common (if not the most common) approach
for this situation is the quasi-Newton scheme – and also the clear
winner for local geometry optimization in the above-mentioned
benchmark [10]. The quasi-Newton scheme can be summarized
as follows. A necessary condition for being in the energy minimum
is that the forces vanish, i.e.,

f i ¼ � @E
@Ri

¼ 0 ð1Þ

for all coordinates i. Given the second derivative (the Hessian)

Hij ¼ @2E=ð@Ri@RjÞ, the optimal step DRi ¼ Rðnþ1Þ
i � RðnÞ

i to take from
the n-th configuration to the next one is
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DRi ¼
X
j

H�1
n o

ij
f j: ð2Þ

For a purely parabolic potential energy surface, this Newton
step directly jumps to the minimum if the Hessian is known
exactly. In more realistic cases, there is a weak non-linear (anhar-
monic) dependence of the forces on the displacement DRi. More-
over, the Hessian used in Eq. (2) is often only approximate
(which makes the scheme quasi-Newton). In these cases, the errors
in positions, forces, energy, etc. are reduced on average by a con-
stant factor in each step.

This can be understood from the general theory of Krylov sub-
space methods (see Appendix A for details). The rate of conver-
gence is determined by the condition number (the ratio of the
largest to the smallest eigenvalue of the Hessian). The quasi-
Newton scheme can be interpreted as a steepest-descent scheme
with the approximate Hessian serving as a preconditioner. The
convergence rate then depends on how well the approximate Hes-
sian is able to compress the eigenvalue spectrum of the true Hes-
sian. Therefore, quasi-Newton schemes continuously improve the
approximate Hessian based on the observed change in the forces
upon displacing the atoms. In the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) variant [11–14] (the most common one in geometry
optimization of local minima [1,10]), the inverse of the Hessian, B,
is updated as

Bðnþ1Þ
ij ¼

X
i0 j0

dii0 � csðnÞi yðnÞ
i0

� �
BðnÞ
i0j0

� dj0 j � cyðnÞ
j0 sðnÞj

� �
þ csðnÞi sðnÞj ð3Þ

with

sðnÞi ¼Rðnþ1Þ
i � RðnÞ

i ð4Þ
yðnÞi ¼� f ðnþ1Þ

i � f ðnÞi

� �
ð5Þ

and

c ¼ 1=
X
i

sðnÞi yðnÞi : ð6Þ

The update defined by Eqs. (3)–(6) garantuees that (a) the force
change in the last step is correctly predicted by the new Hessian,
and (b) the Hessian is otherwise changed minimally. Please note
that there is no need to perform a line search if the potential
energy surface is close to quadratic: If the force changes are linear
in the displacements, the step proposed by the updated Hessian
removes the remaining force along the previous step, see Appendix
B.

As higher-order contributions to the potential energy surface
become increasingly important for large steps, most algorithms
limit the step size. This ensures that the effective quadratic contri-
butions captured by the quasi-Newton scheme dominate the
change in forces. Limiting the step size has an additional advantage
in electronic-structure calculations. The wavefunctions and elec-
tronic density are typically computed iteratively from some initial
guess. At each step of geometry optimization, the converged wave-
function and density of the current atomic configuration are then
extrapolated to the new structure. The smaller the change in
atomic positions, the better this new initial guess for the electronic
loop becomes. Hence, several small atomic steps in the same direc-
tion may be quite comparable in total run time to one big step. In
our case, the maximum displacement is limited to 0.3 bohr.

The initial Hessian is typically taken diagonal, and it is here
where most of the trouble starts in Cartesian coordinate optimiza-
tion. In the absence of external fields, atomic forces depend on
interatomic distances, developing notably between nearest neigh-

bors. The structure of the Hessian, i.e., its dominant entries, is
therefore determined by the nature of the chemical bond between
atoms, and their connectivity of course. Neglecting this fundamen-
tal principle gives a lousy initial spectrum. It is (unfortunately) fre-
quent practice in periodic-boundary DFT codes to initialize
diagonal Hessians for Cartesian-coordinate optimizations with a
single value on the diagonal [10,15]. For a diagonal matrix, the
eigenvalues are given by the entries on the diagonal. However,
the true spectrum in a solid ranges from very hard local modes,
that affect a few interatomic distances in a narrow spatial region,
to very soft, elastic-wave like modes. Recovering the spectrum by
BFGS updates even qualitatively takes Oð3NÞ steps. This has of
course been recognized early on in the molecular electronic struc-
ture community. One solution proposed is to perform the opti-
mization not in Cartesian coordinates, but in redundant internal
coordinates [16,17]. Transformation from Cartesian coordinates
to redundant internal coordinates is straight-forward, and so is
the projection of forces [17]. The reverse procedure of translating
redundant internal coordinates to Cartesian ones is approximate
(because there may not exist a configuration that yields all redun-
dant coordinates at the desired value), and iterative. It is also pos-
sible to set up the initial Hessian for Cartesian coordinate
optimization from a (diagonal) Hessian in internal coordinates.
While this improves the quality of the initial guess, other advan-
tages of internal coordinates are lost. For instance, if a fragment
of the structure rotates in space without changes in internal coor-
dinates within the fragment, we may expect that the Hessian
remains largely unchanged. In Cartesian coordinates, however,
the rotation affects all entries.

Redundant internal coordinates obviously succeed in taking
atom connectivity into account. However, the initial guess still
requires reasonable start values. In molecular systems, or more
generally: covalently bonded systems of main-group elements,
the ‘usual’ internal coordinates (bond lengthes, bond angles, tor-
sion angles, etc.) and empirical rules for force constants are well
established. For instance, the bond length force constant (bond dis-
tance d) often follow the empirical Badger rule [16,18,19]

D ¼ A

ðd� BÞ3
ð7Þ

with constants A and B depending on the involved chemical ele-
ments. For main group elements of the 1st, 2nd, and 3rd row in
the periodic table, these constants depend mostly on the row of
the corresponding element [16,18]. Other rules for deriving force
constants have been suggested, too, e.g. by Fischer [20] and Lindh
[21].

To summarize, a quasi-Newton scheme consists of (1) the coor-
dinate system, (2) the initial Hessian, (3) the updating scheme for
the Hessian, and (4) the step size control. These ingredients are
interconnected and all influence the number of steps taken by
the algorithm to reach the desired minimum.

Despite the enormous advantages that have been demonstrated
for internal coordinates in molecular [1,16,17,22] and covalently
bonded periodic systems [23–25], they have never become the
coordinate system of choice for other materials, e.g., ionic and
metallic ones. This might be related to the difficulty in finding an
appropriate set of internal coordinates and rules for the initial force
constant values for non-covalent bonding. For instance, Waser and
Pauling investigated the validity of the Badger rule for a wide range
of solid materials from elements throughout the periodic table
[19]. They found that the rule is valid for subgroups of pure ele-
ments, but that notably for compounds no reasonably general
trend was visible. In view of the wide range of bonding situations
in solids – ranging frommetallic over covalent to ionic – the failure
to find a single rule for a wide range of materials is not surprising.
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