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a b s t r a c t

Within an artificial neural network (ANN) approach, we classify simulated signals corresponding to the
semi-classical description of Bloch oscillations on a two-dimensional square lattice. After the ANN is
properly trained, we consider the inverse problem of Bloch oscillations (BO) in which a new signal is clas-
sified according to the lattice spacing and external electric field strength oriented along a particular direc-
tion of the lattice with an accuracy of 96%. This approach can be improved depending on the time spent in
training the network and the computational power available. This work is one of the first efforts for ana-
lyzing the BO with ANN in two-dimensional crystals.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Flat two-dimensional crystals are unstable against thermal fluc-
tuations according to the Mermin-Wigner theorem [1]. Therefore,
the early study of these crystals was considered just for academic
convenience. More recently, it has been known, nevertheless, that
some interesting phenomena occur effectively in two-dimensions,
like quantum Hall effect [2,3] and high-Tc superconductivity in
cuprates [4]. Soon after the first isolation of graphene flakes [5,6],
a new era of materials science emerged [7] with a huge variety
of two-dimensional (2D) systems discovered in the recent past
[8]. The 2D materials are nowadays a cornerstone of solid state
physics and materials science because of their potential technolog-
ical applicability and their impact in fundamental research. Many
of these 2D crystals have the crystal structure of the square lattice,
which due to its high symmetry, allows the study of a number of
interesting phenomena, like Bloch oscillations (BO) [9]. It is well
known that BO are not observed directly on crystals because of
intraband tunneling and ultrafast electron scattering; BO are
directly observed in high purity superlattices under different
experimental setups [10–19]. The equations of motion of BO are
also relevant for a number of optical systems [20,21]. For that pur-
pose, in a previous work [22], some of us posed the inverse prob-
lem of BO for the linear chain within an artificial neural network
(ANN) approach [23,24]. The idea is to use simulated signals for
BO in a semiclassical approximation to train the ANN and then

classify a new signal according to the lattice spacing and electric
field strength with high accuracy. In this paper we extend these
ideas to the 2D square lattice.

We develop a framework in which the ANN is trained using the
simulated signals corresponding to the semiclassical description of
BO for a 2D square lattice considering only the nearest neighbor
influence. We then predict the strength of electric field along a par-
ticular direction of the lattice and the lattice spacing that produce
such trajectories. We achieve up to 96% of accuracy in our classifi-
cation scheme, which can be improved depending on the computa-
tional time and computer power available.

For the presentation of ideas, we have organized the remaining
of this paper as follows: In Section 2 we give a description of the BO
phenomenology in the semiclassical approach. In Section 3, we
describe how the signals were generated and the ANN configura-
tion. In Section 4 the results for all the analyzed cases are discussed
and finally, in Section 5, the conclusions are presented.

2. Bloch oscillation: semiclassical approach

We start our discussion from the tight-binding Hamiltonian of a
monoatomic 2D square lattice of spacing a. Considering the nearest
neighbors approximation, we have

Hwn;mðkÞ ¼ �twnþ1;mðkÞ � twn�1;mðkÞ
� twn;mþ1ðkÞ � twn;m�1ðkÞ þ �0wn;mðkÞ

� Eðn;mÞðkÞwn;mðkÞ; ð1Þ
where t is the hopping parameter and k ¼ k1êx þ k2êy is the crystal-
momentum of electrons in 2D. From Bloch theorem, it is straightfor-
ward to find that the energy-momentum dispersion relation is:
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Eðn;mÞðk1; k2Þ ¼ �0 � �ðn;mÞðk1; k2Þ; ð2Þ
where

�ðn;mÞðk1; k2Þ ¼ wð1� cosðk1aÞ � cosðk2aÞÞ; ð3Þ
�0 is the on-site energy andw ¼ 2t. Next, we recall the semiclassical
equations of motion for an electron moving in an external electric
field E oriented parallel to one direction of the square lattice,

dk
dt

¼ �eE; ð4Þ
dr
dt

¼ 1
�h

@

@k
�ðn;mÞðk1; k2Þ: ð5Þ

We can straightforwardly integrate the equations of motion and
obtain the velocities and trajectories for a given external field
strength. Considering the lattice oriented along the x� y plane
and a uniform electric field E ¼ E1êx þ E2êy, we integrate Eq. (4)
assuming the initial condition kjð0Þ ¼ 0 with j ¼ 1;2. Thus

kjðtÞ ¼ � eEj

�h
t: ð6Þ

Rewriting Eq. (5), the electron velocity is given by:

v ðn;mÞ
j ðkjðtÞÞ ¼ wa

�h
sinðkjðtÞaÞ;

¼ �wa
�h

sin
eEja
�h

t
� �

; ð7Þ

and the electric current is simply ji ¼ �ev i. Integrating Eqs. (7) we
get the profile of BO obtaining the position of the electrons as func-
tion of time:

xðn;mÞ
j ðtÞ ¼ w

eEj
cos

eEj

�h
at

� �
;

¼ w
eEj

cosðxEj tÞ; ð8Þ

with xEj ¼ eEja=�h. Eqs. (8) describe the trajectories which are in
fairly good agreement with the experimental observations of BO.
In the next Section we describe how the oscillations described by
Eq. (7) are simulated and how ANN processes them in order to give
an accurate result.

3. Signals creation and feature processing

For fixed lattice parameters a and t, the trajectories described by
Eqs. (7) and (8) are functions of the electric field strength along
each spatial direction, which becomes the only free parameter that
characterizes a given trajectory in our considerations. We have
trained an ANN that associates the electric currents of the electrons
with their corresponding electric fields. In other words, the ANN
learns through some examples the relationship between the elec-
tric current signals in the 2D square lattice and the electric fields
that generate those currents. First, let us describe how the training
signals were generated then we explain the classification process.

For simplicity and without loss of generality, all signals were
created following the next considerations:

� The parameters of Eqs. (7) and (8) were fixed to dimensionless
units e ¼ �h ¼ 1;w2 ¼ w2 ¼ a ¼ 0:5.

� The signals were generated for a time lapse s ¼ 200.
� We integrate the signals considering the possibility of negative
and positive electric fields for both E1 and E2 on three different
ranges defined by Emin and Emax. These cases will be describe
more thoroughly later on Section 3.1.

Once the signals were produced, we selected as inputs of the
ANN values for each component of the velocity (v1 and v2) at

one hundred different times defined by ti ¼ iDt, with
Dt ¼ s=100 ¼ 2 and i ¼ 0;1; . . . ;99. This means that the ANN will
analyze a signal V consisting of two hundred values:

V ¼ fv1ðt1Þ; v2ðt1Þ; . . . ; v1ðtnÞ; v2ðtnÞg: ð9Þ
In Fig. 1 we show an example of BO velocities and the correspond-
ing values where the trajectories were evaluated with E1 ¼ �0:22
and E2 ¼ 0:14 generated using Eq. (7).

As the goal is to classify the electric field in 2D, we impose that

the feedforward ANN has two outputs eE1 and eE2. Notice the differ-
ence between ~Ei as the predicted value and Ei the physical value.
Considering a single hidden layerwith 27 neurons, the equation that
defines the predicted value given an input signal V is defined by:

eEj ¼ F
X27
h¼1

~rhjF
X200
i¼1

rihVi

 ! !
; ð10Þ

where j ¼ 1;2. F is the activation function for the hidden and output
layers, in this case the standard sigmoid logistic function were used;
rih and ~rhj are the weights between the input and hidden layer and
hidden to output layer respectively. The ANN structure is illustrated
in the Fig. 2.

3.1. Electric field scenarios

The accuracy of the ANN depends on the frequency of the sig-
nals, the electric fields and sampling points. In this Section, we ana-
lyze how the performance of the ANN behaves in three different
scenarios. Using 625 signals with all the parameters kept fixed
except for the electric field that ranges in the scenarios:

(i) Between ½Emin ¼ �0:5; Emax ¼ 0:46� separated in steps of
DE ¼ 0:04.

(ii) Between ½Emin ¼ �1; Emax ¼ 0:92� with DEj ¼ 0:08.
(iii) Between ½Emin ¼ �0:25; Emax ¼ 0:23� with DEj ¼ 0:02.

Considering that the activation function F used in Eq. (10) is a
sigmoid function, the output of the network will be within the
range ½0;1�. The ANN’s outputs could be divided in classes that rep-
resent the target intervals for E1 and E2. This means that the more
classes an output has, the more precision is required for a correct
classification. For this case, we have decided to divide each output
in 5 classes. For clarity, let us develop the case ((i)) where
DEj ¼ 1=25 and Emin ¼ �0:5 and Emax ¼ 0:46. Therefore for each
Ej, every class covers up the range:

Emin þ 5fDE 6 Ef < Emin þ 5ðfþ 1ÞDE;0 6 f 6 4; ð11Þ
where Ef index each class for any of signal Ej sections. An schematic
representation classes division is presented in Fig. 3. However,
because the ANN’s output is defined between (0,1), we need to
map the electric field class classification into this range. For that,

we define the center each one of the five classes bEf in the output
neuron as:

Ef � bEf ¼ 0:1þ 0:2f: ð12Þ
Besides, the center of each class will be used as the target value

(bEf) in the training phase. For example, if the signal is created with
any of the first five values for E1 (f ¼ 0) and the last five values of E2

(f ¼ 4), then the ANN has correctly classified this signal if:bE0 � 0:1 6 eE1 < bE0 þ 0:1; ð13ÞbE4 � 0:1 6 eE2 < bE4 þ 0:1: ð14Þ
In the following section we discuss the training procedure used to
minimize the error of the predictions.
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