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a b s t r a c t

Recent experiments employing nanosecond white-light X-ray diffraction have demonstrated a complex
response of pure, single crystal silicon to shock compression on ultra-fast timescales. We present here
details of a Lagrangian code which tracks both longitudinal and transverse strains, and successfully repro-
duces the experimental response by incorporating a model of the shock-induced, yet kinetically inhibited,
phase transition. This model is also shown to reproduce results of classical molecular dynamics simula-
tions of shock compressed silicon.

� 2016 Published by Elsevier B.V.

1. Introduction

The response of matter to rapid shock compression has been a
field of study for well over a century. One material that has been
a subject of particular interest for several decades is single crystal
silicon [1–4]. Given that this element can be manufactured in an
almost perfect, defect-free form, it might first appear to be an ideal
test-bed for studying the fundamental physics of shock compres-
sion. However, in many ways the opposite has seemed to be true,
in that despite many attempts, a full understanding of how such
perfect single crystals react at the lattice level to rapid uniaxial
loading has remained surprisingly elusive, with apparently differ-
ing results and interpretations being put forward between gas
gun experiments [5,6] and those performed on a shorter time-
scale employing laser-plasma-based drivers [7].

However, recent work employing nanosecond white-light Laue
diffraction to diagnose laser-driven shocks in single crystal silicon
shocked along the [100] axis has re-confirmed that a complex
elastic response, first observed by Loveridge-Smith et al. [7],
indeed occurs [8]. This work showed that when silicon is shock-
compressed to stresses in the regime of a few 10’s of GPa on
nanosecond timescales, a leading double elastic-wave structure
can form in compression, which, upon breakout from a free surface,
can also result in a state of elastic tension.

In the work of Ref. [8], it was shown that the observed experi-
mental results were consistent with simulations based on a simple

Lagrangian code, which incorporated in an empirical manner a
pressure dependent, but kinetically inhibited (delayed) phase tran-
sition, with the complex elastic behaviour being a result of the rel-
atively large volume collapse associated with the change in phase.
However, within the work of [8], for the sake of brevity no details
of the code, and the assumptions that underpin it, were presented.
Within the paper presented here we rectify this situation, giving a
full description of the code, and a description of how states of
strain within the shocked sample are determined, allowing us to
predict time-dependent X-ray diffraction patterns that can be com-
pared directly with experimental results.

Before describing the code in detail, we briefly recap the main
features of the particular experiment it is designed to model.
Within this experiment, 30 lm thick samples of [001] silicon,
over-coated with a 15 lm layer of parylene-N ablator, were shock
compressed by irradiation with a 5 ns square pulse of 351 nm light
at an irradiance of 4� 1014 W cm�2. At a time of 5 ns after the
onset of this drive pulse, a laser-plasma-generated, quasi-white-
light beam of X-rays (3–10 keV) were diffracted from the rear
undriven surface of the target, with the X-rays being collimated
such that they impinged on a central region of 0.8 mm diameter
directly opposite the 5 mm diameter drive spot. The timing of
the X-rays was such that they were diffracted from as-yet
unshocked material, as well as the elastic compression waves that
moved toward the rear surface of the target, and also the regions of
tension that formed upon shock breakout. Further and more
complete details of the experimental set-up can be found in
Ref. [8].
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In order to model the sample response we utilise and adapt a
simple two-step algorithm to solve the elasticity equations within
a Lagrangian framework put forward by Horie [9]. As we show
below, this model allows us to keep track of the time and space-
dependent elastic strains within the sample, and subsequently
from them predict X-ray diffraction patterns. This approach has
recently proven to be successful in modelling femtosecond diffrac-
tion patterns recorded from copper as it is shock compressed on
picosecond timescales [10,11].

The paper is laid out in the following manner. Firstly the rele-
vant phase transition in silicon is introduced, followed by the for-
malism for the elastic code, including the equations that govern
the phase transition. We discuss the necessary prerequisites for
the code’s function, and the extent of fitting required. Finally, we
show a comparison between the new code and molecular dynam-
ics simulations, before making concluding remarks.

2. Theory

2.1. Cubic diamond! b-Sn transition in silicon

We start by summarising the physics of the relevant phase tran-
sition in silicon; the first order transition from the ambient phase,
which has a cubic diamond (cd) structure, to the higher pressure
b-Sn structure, which occurs at 13 GPa on the hydrostat [1]. The
crystal structures for these two phases are shown in Fig. 1. It
should be noted that although we choose to refer to b-Sn in this
paper, a similar analysis would apply to the closely related Imma
phase, which is found to become stable between 15–32 GPa.

Several features of this transition lead to complexity in its
modelling. Firstly, silicon exhibits a large volume collapse of 21%
between cd and b-Sn. Molecular dynamics simulations suggest
that, for compression of single crystals along [001], this proceeds
via a significant contraction along the compression direction, and
an accompanying transverse expansion. Moreover, previous
studies suggest a significant enthalpy barrier, and thus kinetic
effects must be considered [12,8].

In the following sections we will develop the theory of the
Lagrangian elasticity (LE) code to allow for meaningful simulation
of such a system.

2.2. Lagrangian elasticity code formalism

The approach described here is based on the two step integra-
tion of the elasticity equations described by Horie [9,10]. This
method allows for solution of the 1d Lagrangian wave equations
of Taylor [13]
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where q0 is the initial density of the material in a Lagrangian ele-
ment, u is its position, rn the normal stress, and �n the normal true
strain. Note the use of true, rather than engineering strain, leads to
an additional factor of e��n not present in Taylor’s description.

By utilising the equations of elasticity we can extend our model,
tracking both longitudinal and transverse properties, while retain-
ing a 1d integration scheme. We modify Taylor’s treatment by con-
sidering a relation based on the full, strain dependent, compliance
tensor, �i ¼ Sijð��Þrj. In order to allow for the strain dependence of
the compliance tensor, we define the components in terms of small
changes in stress and strain, which in the case of tetragonal sym-
metry gives
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where we have employed Voigt notation, and have defined �3 ¼ �n
and �1 ¼ �2 ¼ �t (with similar definitions for the stress tensor),
where subscripts n and t denote directions normal to and transverse
to the compression direction respectively. We assume here that the
stress and strain tensors are diagonalised, and that the two trans-
verse stresses, and thus strains are equal. This leads to stress/strain
relations of the form

D�n ¼ S33Drn þ 2S13Drt ; ð4aÞ

D�t ¼ S13Drn þ S1112Drt; ð4bÞ
where we have relabeled ðS11 þ S12Þ ¼ S1112 to make clear that the
relations require only three independent elastic constants. These
equations are analogous to Eq. (4) in Ref. [10]1, where only two elas-
tic constants are needed to describe a cubic system.

2.3. Phase transition

The formalism outlined above allows for integration of stress in
a purely elastic solid. Previous work has used an additional model
for plastic relaxation due to dislocation motion, however, in this

Fig. 1. The two Si phases of interest. (a) The cubic diamond phase: a face-centered
cubic lattice with a basis of ð0; 0; 0Þ; 1
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. (b) The b-Sn phase: a tetragonal

lattice, with the same basis as cd. We use values of a = 5.431 Å, b = 6.897 Å and
c = 2.548 Å, found by minimising the energy of the unit cell in MD, while holding
the cell at zero external pressure.

1 It should be noted that the original paper [10] contains a typographical error in
these equations, and that they should read, in the original nomenclature:
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