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a b s t r a c t

Long range ordering in the bcc phase of the Cu-Al-Ni alloy is modelled through the analytical Bragg-
Williams approximation and by means of numerical Monte Carlo simulations. The interchange energies
that govern the ordering reactions are determined by fits to experimental ordering temperatures. A sat-
isfactory agreement with the experimental data is obtained within both models, using slightly different
sets of interchange energies. It is found that ordering in first neighbours is driven by the Ni-Al interac-
tions, whereas the ordering in next nearest neighbours occurs by a reordering of Cu-Al pairs. Monte
Carlo simulations enable a reinterpretation of the experimentally observed ordering reactions. Further
details of the ordering process, such as the existence of tricritical points as the Ni content is reduced,
and the evolution of sublattice occupancies as the ordering proceeds are also discussed: the site occupa-
tion probabilities at low temperatures agree with the experimental values.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cu-Al-Ni, as other Cu-Al based alloys, has shape memory prop-
erties associated with a martensitic transformation. This transfor-
mation takes place from a high temperature b phase, with bcc
structure, to a low temperature martensitic phase. At temperatures
above the martensitic transformation, the b phase can be in differ-
ent states of long range order (lro). For instance, in the range of
experimentally investigated compositions, the Cu-Al-Ni alloy
undergoes a two stages ordering process: first from a disordered
(or short range ordered) bcc structure, called A2, to a B2 structure
ordered in first neighbours, and then to a L21 phase with order in
first and second neighbours [1,2]. The type and degree of order
in the b phase modifies the properties associated with the marten-
sitic transformation [3]; thus, the understanding of the ordering
processes is of interest from both basic and applied points of view.

The description of the different superstructures can be made
with the help of Fig. 1, which shows the general bcc lattice and
the four interpenetrating fcc sublattices (I to IV) in which it is sub-
divided. In the A2 structure all the sites have the same probability
of being occupied by any of the atomic species, pI

A ¼ pII
A ¼ pIII

A ¼ pIV
A

(A = Cu, Al, Ni). In the B2 structure (ClCs type), the occupation of
the center of the cubes differs from that of the corners,
pI
A ¼ pII

A – pIII
A ¼ pIV

A . In the L21 configuration (Heusler type struc-

ture), there is an additional ordering in second neighbours,
pI
A ¼ pII

A – pIII
A –pIV

A – pI
A.

The most comprehensive experimental assessment of critical
order-disorder temperatures in Cu-Al-Ni is the work by Recarte
et al. [4]. These authors measured critical order-disorder tempera-
tures along three lines of compositions with fixed 13.2 wt% Al,
13.7 wt% Al, and 4 wt% Ni, respectively. For all the investigated
samples, two ordering reactions were observed, that the authors
identified with A2? B2 and B2? L21 ordering processes.

From the theoretical side, there have been three previous
attempts to model the temperatures of atomic long range ordering
in Cu-Al-Ni [4–6]. These studies were based on mean field approx-
imations. In Ref. [4], expressions derived from the point (Bragg-
Williams, BW) approximation [7] were used. It was assumed that
the chemical interactions between AB pairs were determined by
constant (composition and temperature independent) pair inter-

change energies in first and second neighbours, W ðkÞ
AB (AB = CuAl,

CuNi or AlNi, k = 1, 2 for first and second neighbours, respectively).

The values forW ð1;2Þ
CuAl were taken from [8],W ð1;2Þ

AlNi from [9], and it was

assumed that W ð1;2Þ
CuNi ¼ 0. In Ref. [5], the BW model, as modified by

Inden [7] was used to model the A2 + B2 and B2 + B2 coexistence
regions observed experimentally at low temperatures. The inter-
change energies in first and second neighbours for Cu-Al and
Ni-Al were obtained from the (extrapolated) order-disorder tem-
peratures in the corresponding binary alloys, whereas for Cu-Ni
pairs they were assumed to be zero. More recently, a model based
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in the irregular tetrahedron approximation of the cluster variation
method (IT-CVM) [10] was employed by Pelegrina [6] to determine
a new set of interchange energies from a fit to the experimental
critical temperatures.

Despite these previous theoretical efforts, there are some issues
that still remain unclear. One of them is the fact that, in all the
range of compositions experimentally studied, Cu-Al-Ni displays
a two-steps ordering process even for very low Ni contents
(2.73 at.%, [4]). This contrasts with the behaviour of other Cu-Al-
X ternary alloys (X = Zn, Be, Mn), which, for low contents of the
third element X (below �8 at.%), display a single A2M L21 transi-
tion [27–31], consistently with the fact that Cu-Al with composi-
tions close to Cu3Al has also a single ordering transition [23]. The
different behaviour of Cu-Al-Ni could be attributed, in principle,
to a high binding energy for Ni-Al pairs. One of the objectives of
the present work is the construction of realistic model which can
clarify this and other points.

The BW model has the advantage of its relatively easy applica-
tion to the problem of atomic ordering, and, in particular, provides
analytical expressions for the determination of interchange ener-
gies by fitting to experimental order-disorder temperatures. How-
ever, since this model neglects short range order correlations, the
thermodynamical quantities obtained within this approach consid-
erably differs from the results obtained with more realistic meth-
ods [11]; this has been shown to occur, for instance, in the
related ternary Cu-Al-Zn system [12]. A more sophisticated
approach is the Monte Carlo (MC) method, which allows obtaining
quasi-exact results from calculations made on finite systems [13].
However, due to the numerical character of this technique, it may
become difficult determining the interaction parameters from a fit
to experimental data, such as order-disorder transition tempera-
tures. A plausible solution, which will be employed in the present
work, is to use the interchange energies obtained within the BW
model as initial guesses for the MC simulations [11]. This initial
values should be optimized in order to obtain an adequate descrip-
tion of the experimental order-disorder temperatures.

The purpose of the present work is the construction of a model
for the description of ordering phenomena in Cu-Al-Ni. The inter-
change energies are determined by fitting to the experimental
order-disorder temperatures from Ref. [4]. The BW formalism, as
described in Section 2.1, is used as first approximation, and the val-
ues are further optimized for their use in MC simulations
(described in Section 2.2). Two types of MC simulations are per-
formed: first, canonical ensemble simulations with direct atomic
interchanges are used to optimize the energetic parameters and

to analyze the predicted atomic distributions. Then, the phase
equilibrium around the compositions of interest is studied by
means of simulations in the grand-canonical ensemble. The rest
of this paper is organized as follows: in Sections 3.1 and 3.2 we
present and discuss the results obtained with BW and MC, respec-
tively; the validity of the MC model is analyzed by comparing with
other experimental information not included in the fitting. The
main conclusions are drawn in Section 4.

2. Theory

2.1. Bragg-Williams model

The Bragg-Williams (BW) [7] model is the lowest step in a hier-
archy of successive approximations to the free energy of an alloy
known as the Cluster Variation Method (CVM) [10]: In this approx-
imation, the configurational free energy is written in terms of the
probabilities pai for a site in sublattice a (a = I � IV) to be occupied
by an atom of specie i. Since probabilities of larger clusters (for
instance, pair probabilities) are given just in terms of the pai ’s, this
is also known as the point approximation of the CVM [11,14]. For a
bcc ternary alloy A-B-C with atomic fractions cA, cB and cC, and con-
sidering constant pair interactions extended to first and second
neighbours, the configurational free energy per atom, F/N, takes
the form [15]:

F
N

¼ U � TS
N

¼
X
ij

4xixjW
ð1Þ
ij � 3 xixj � 1

2
ðyiyj þ zizjÞ

� �
W ð2Þ

ij

� �

þ
X
ij

cicj �4W ð1Þ
ij � 3W ð2Þ

ij

� �
þ
X
i

ci 4V ð1Þ
ii þ 3V ð2Þ

ii

� �

þ kBT
4

XIV
a¼I

pai � ln pai
� 	 ð1Þ

In the above expression, U is the internal energy, T is the abso-

lute temperature and S the entropy; V ðkÞ
ii is the interaction between

a pair of i � i atoms placed as first (k = 1) or second (k = 2) neigh-

bours; W ðkÞ
ij ¼ �2V ðkÞ

ij þ V ðkÞ
ii þ V ðkÞ

jj are the so-called interchange

energies, which determine the tendency to ordering or segregation
between the components i and j. The parameters xi are linear com-
binations of probabilities and quantify the degree of order in first
neighbours

xi ¼ pI
i þ pII

i � pIII
i � pIV

i

4
ð2-aÞ

whereas yi and zi are linear combinations that describe the ordering
between second neighbours,

yi ¼
pI
i � pII

i

2
ð2 - bÞ

zi ¼ pIII
i � pIV

i

2
ð2-cÞ

Due to the conditions
P

ip
a
i ¼ 1, and

P
ap

a
i ¼ 4ci, only six among

the twelve occupation probabilities are independent; the descrip-
tion of the type and degree of lro is then more conveniently per-
formed through the six independent parameters xi, yi and zi (i = A,
B; xC = �xA � xB, yC = �yA � yB, zC = �zA � zB). Thus, in absence of
lro (structure A2), is xi = yi = zi = 0; in a B2 configuration, ordered
in first neighbours, is xi – 0, yi = zi = 0; and for an L21 structure is
xi – 0, zi – 0, and yi = 0.

In Eq. (1), the first term accounts for the energy due to ordering,
the second one is the energy due to mixing, the third one is the
internal energy of the pure components, and the last one is the
configurational entropy (kB being the Boltzmann’s constant). The
summations run over i = A, B, and C, or over ij = AB, AC, BC.

Fig. 1. The bcc lattice and the four interpenetrating sublattices in which it is
subdivided.
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