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a b s t r a c t

Phase-field crystals (PFC) is an atomistic model on diffusive time scale with the capability to simulate
solidification/melting and the subsequent nano-structural evolution while naturally accounting for elas-
ticity and plasticity. Although PFC was originally introduced as a phenomenological model in materials
science (Elder et al., 2002), it was later shown that it can be derived from density functional theory
(DFT) by certain approximations (Elder et al., 2007) providing a significant predictive capability for
PFC. However, these approximations in PFC, similar to any other higher-scale computational model
derived from DFT, have introduced intrinsic challenges for quantifying of PFC for specific materials; i.e.
determining PFC model parameters for specific materials. The objective of this article is to present a vari-
ety of possible approaches that can be used for quantifying PFC for solidification/melting modeling. Thus,
we present a reformulation of PFC model containing two extra parameters and four possible quantifica-
tion approaches. Then, representative material properties corresponding for each individual approach are
calculated and compared with their available experimental/computational counterparts in literature. The
representative material properties include elastic constants, liquid and solid densities, liquid structure
factor, latent heat, and solid-liquid interface free energy and its anisotropy. We discuss the quantitative
capabilities of each quantification approach regarding their prediction of the mentioned representative
material properties for Fe as an example material. The discussion provided in this study can be used
as a guideline to select the proper quantification approach for researchers who need to use PFC for quan-
titative modeling.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

PFC is a material model that can be used for simulation of the
phenomena taking place in both atomistic length and diffusive
time scales, the combination of which remains inaccessible by
other material models such as molecular dynamics (MD) [1–3].
PFC naturally takes to account elasticity and plasticity of material
because it uses density field in its formulation that is constant in
liquid and a periodic function in solid. The density field in PFC var-
ies smoothly from the periodic function to a constant value at the
solid-liquid interface similar to phase-field models (PFMs) wherein
the density field smoothly varies between two different constant
values (e.g. zero and one) at the solid-liquid interface; thus, it
has the most important computational advantage of PFM which
is eliminating the need for interface front-tracking [4–6]. The com-
bination of the mentioned characteristics has introduced PFC as a
material model with a great potential to simulate and predict

material processing such as solidification [7–9], microstructure
developments [10,11] elastic deformation [12], diffusion-
mediated plasticity and creep [13], spinodal decomposition [14],
grain boundary premelting [15], dislocation dynamics [16,17],
Kirkendal effect [18–20], structural phase transformation [21,22]
and staking fault [23,24], magnetic systems [25,26], liquid crystals
[27–29], glass formation [30,31], foam dynamics [32].

One of the interesting characteristic of PFC modeling of solidifi-
cation/melting is the quantitative nature of the simulations that
has been explored in recent studies [4] because PFC formulation
can be directly derived from classical density functional theory
(DFT) using certain approximations [33,34]. The quantitative aspect
of PFC modeling can be explored by determining the PFC parame-
ters for a specific material and calculating some representative
material properties and comparing them to their experimental/
computational counterparts. In this regard, Wu and Karma [35]
studied the equilibrium properties of bcc-liquid interface using
PFC by developing a fitting approach to determine PFC parameters.
They calculated bcc-liquid interface free energy and surface
anisotropy for Fe, compared them with the data obtained from
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Ginzburg-Landau theory and MD simulations, and observed rea-
sonable agreements; this work was the first proof of the quantita-
tive capabilities of PFC. The fitting approach of Wu and Karma
was followed by other researchers with some modifications that
are explained next. Jaatinen et al. [36] slightly modified the fitting
approach of Wu and Karma by using the Maxwell’s construction to
numerically calculate the solid and liquid coexisting densities. They
calculated bcc-liquid interface free energy and surface anisotropy
for Fe and obtained similar results within the variations of these
quantitative calculations in literature. Jaatinen and his coworkers
also showed that the quantified PFC model significantly overesti-
mates the expansion in melting and underestimates liquid and
solid bulk moduli. Later, Wu et al. [37] showed that PFC model
underestimates all the elastic constants C11, C12, and C44 while
inheriting C11=2 ¼ C12 ¼ C44 from the formulation of its free energy.
Asadi et al. [38,39] slightly improved the fitting approach of PFC by
employing an iterative procedure and providing more accurate
input properties from modified embedded-atom method (MEAM)
MD simulations.

Hereafter, the original PFC models will be referred as one-mode
PFC model, as it is widely called in literature, because it damps the
dynamic of the system except near the first density wave vector.
Some researchers argued that the inconsistency in calculations of
properties using PFC is due to some unnecessary approximations
in deriving PFC from dynamical DFT [7,40]; i.e. polynomial approx-
imation for ideal gas free energy. Van Teeffelen et al. [7] showed
that a PFC model (called PFC1) can be derived from dynamical
DFT that includes less approximations than one-mode PFC and still
has the same computational cost. PFC1 still needs a scaling factor
for the excess free energy to calculate similar stability regime of
the crystalline solution to the dynamical DFT. Guo et al. [41] devel-
oped a one-mode PFC model by adding a term related to the gradi-
ent of the average density to the PFC free energy. The coefficient of
the gradient term provides the ability to the model for fitting to the
experimental solid-liquid interface free energy. Another approach
adopted by researchers to enhance the quantitative capabilities
of PFC modeling has been the development of PFC models that
have higher-order spatial derivatives in their free energy formula-
tion; the free energy of one-mode PFC contains forth-order spatial
derivative. This modification done by considering the fact that one
of the approximations necessary to derive PFC is to approximate
the two-point correlation function of liquid by a fourth-order poly-
nomial in Fourier space resulting in a fourth-order spatial deriva-
tive in real space as it is in one-mode PFC model. Therefore, the
accuracy of this approximation can be increased by using higher-
order polynomial to represent two-point correlation function in
Fourier space. Following the explained trend, an eighth-order PFC
was introduced by Jaatinen et al. [34,36] that includes an extra
parameter resulting in the correct calculation of expansion in melt-
ing and improved calculations of solid and liquid bulk moduli for
Fe. Two-mode PFC model developed by Wu et al. [37] that damps
dynamics of the system except near the first two density wave vec-
tors can be classified in this type of higher-order PFC models. Wu
and his coworkers quantified the two-mode PFC model for an
example fcc metal (Ni) at the melting point. They also derived ana-
lytical expressions for the elastic constants that only dictates
C12 ¼ C44 not C11=2 ¼ C12. Two-mode PFC was modified by Asadi
and Asle Zaeem [38,42] and quantified for bcc (Fe) [39] and fcc
(Ni, Cu, and Al) [43] metals using their iterative procedure. Modi-
fied two-mode PFC model calculates the expansion in melting of
bcc metals in agreement with experiments but underestimates
the expansion in melting for fcc metals. As it is imperative from
the analytical relations for elastic constants, the modified two-
mode PFC model underestimates C12 ¼ C11=2 but the other two
elastic constants are in agreement with experiments for both fcc
and bcc metals. However, the quantified model can reproduce

either C11 or bulk modulus in agreement with experiments. The
solid-liquid interface free energy and surface anisotropy calcula-
tions of modified two-mode PFC model was also in a reasonable
agreement with their experimental/computational counterparts
in literature. Although higher-order PFC models results in a signif-
icantly better quantitative calculations, these types of models
increase the computational cost by a factor of three comparing to
the computational cost of one-mode PFC, resulting from the incre-
ment in spatial derivatives in the free energy [39].

Considering the simplicity, the relative computational cost, and
the interest to extend the length scale of PFC modeling, it is extre-
mely important to utilize the full quantitative potential of one-
mode PFC model before considering higher-order PFC models. This
article takes on this path to systematically study some possible fit-
ting approaches for one-mode PFC model and their effects on
quantitative capabilities of the model. We first introduce a refor-
mulation for one-mode PFC model that includes two extra param-
eters in its formulation. The analytical relations for elastic
constants, and coexisting solid and liquid free energies are pre-
sented. Then, four possible quantification approaches are pre-
sented and the model parameters are determined for an example
metal (Fe). Representative material properties including expansion
in melting, coexisting solid and liquid densities, elastic constants,
bulk modulus, latent heat, solid-liquid interface free energy and
surface anisotropy are calculated. Finally, a discussion is presented
as a guideline to select proper fitting approach for the researchers
interested to use the presented PFC model for quantitative
applications.

2. Formulation

We introduce two parameters (j1 and j2) to Helmholtz free
energy (F) of one-mode PFC model as

F ¼
Z

1
2
/ðrÞ aþ k q4

0 þ 2j1q2
0r2 þ j2r4

� �h i
/ðrÞ þ g

4
/ðrÞ4

� �
dr;

ð1Þ
where /ðrÞ is a function related to the density field and a, k, q0, g, j1

and j2 are parameters to be determined for a specific material and
temperature. Parameters j1 and j2 are introduced to facilitate the
quantification process of one-mode PFC model as it will be dis-
cussed in details at the following sections. In fact, substituting k

with k=j2, q2
0 with q2

0j2=j1 and a with aþ kq4
0ð1� j2=j2

1Þ turns
the free energy of Eq. (1) to the free energy of the one-mode PFC
model [1,2]. It is also worth mentioning that the free energy pre-
sented at Eq. (1), for the case of j1 ¼ j2 ¼ 1, is identical to the
one-mode PFC free energy; also, it is identical to the anisotropic
PFC free energy [44] if their aij ¼ j1 and aijkl ¼ j2, for

i; j; k; l ¼ 1;2;3. Substituting e ¼ �a=kq4
0, w ¼ /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g=kq4

0

q
, x ¼ qr

0, and

F� ¼ ðg=k2q5
0ÞF into Eq. (1) results in the dimensionless free energy

for the present PFC model

F� ¼
Z

1
2
w �eþ 1þ 2j1r2 þ j2r4

� �h i
wþ w4

4

( )
dr: ð2Þ

Depending on the choice of parameters e;j1; and j2, the free
energy at Eq. (2) is minimized by either a constant density ðwlÞ
for liquid state or a periodic density for solid state. The liquid free
energy density is obtained by substituting constant liquid density
in Eq. (2), taking the integral over a lattice cell, and dividing the
resultant by the volume of the liquid cell as

f l ¼
1
2
w2

l ð�eþ 1Þ þ 1
4
w4

l : ð3Þ
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