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a b s t r a c t

In this article, the effects of nanorod–polymer interaction, aspect ratio of nanorods, block stiffness, and
external tensile force on the microstructure and electrical properties of diblock copolymer nanocompos-
ites have been investigated using molecular dynamics simulation. It is shown that, under suitable inter-
actions of block-block and nanorod-block, a continuous localization of anisotropic nanorods in a
continuous block with a slight uniaxial orientation can dramatically reduce the percolation threshold.
Such effect is reinforced in the systems with high aspect ratio nanorods, but can be suppressed as block
stiffness increases. Meanwhile, the external tensile strain breaks the continuity of the three-dimensional
network but induces strong orientation along with the stretching direction, leading to a decrease of
homogeneous probability and an increase of directional probability.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is known that incorporation of conductive nanofillers into
nonconductive polymer matrix can dramatically improve its elec-
trical properties [1,2]. If the volume fraction of fillers reaches a crit-
ical value, which is called percolation threshold, a continuous
network can be spread out over the polymer matrix, leading to
an insulator-conductor transition. Such phenomenon is particu-
larly intensive in block copolymers, wherein microscopic phases
can be easily formulated between different blocks as well-
defined spherical, cylindrical, bicontinuous, or lamellar domains
at a size in the range of tens of nanometers [3–5]. It has been well
addressed that selective incorporation of nanofillers in a continu-
ous domain [6] or at the interface [7] is effective in reducing the
electrical percolation threshold. Moreover, selective localization
of anisotropic fillers such as carbon nanotubes may result in not
only a huge improvement in electrical conductivity [8] but also
in thermal conductivity [9] and mechanical [10] and photovoltaic
properties [11].

The incorporation of anisotropic nanofillers in polymer matrix
is anfractuous because of the additional orientational entropy
[12–14], the restricted translational entropy [15,16], the depletion
attraction induced by polymer conformational entropy [17,18], and

the highly directed van der Waals interactions between fillers and
polymer chains [19,20]. These entropic and enthalpic contributions
show a synergistic effect on nanofiller localization and copolymer
organization, and finally on the efficient conductive network [3].
Obviously, this behavior is not encountered for a similar copolymer
system doped with spherical particles, emphasizing the role of par-
ticle dispersion under the interactions between doping particles
and polymer blocks. Developing such a comprehensive under-
standing is uneasy due to the fact that the number of parameters
controlling the behavior of the system is large; the final morphol-
ogy will clearly depend on the size, shape, and concentration of
nanofillers, the composition of binary copolymer, and the interac-
tion energies between different species [21,22].

On the other hand, tensile forces are commonly involved in var-
ious processing methods, including extrusion, injection molding
[23], spinning [24] or stretching [25]. These forces often play
important roles in the filler morphology via the stress transfer
between the matrix and the filler, and then in controlling the mor-
phology of the conductive networks in polymer composites
[25,26]. Under the stress–strain condition, the fillers will shift
and rotate, resulting in the destruction and the reconstruction of
conductive network [27–29].

In order to improve the conductive efficiency of polymer
nanocomposites, it is critically important to make clear how the
presence of the anisotropic nanofillers affects the self-assembly
of block copolymers and in turn, how the microphase separation
of polymer blocks affects the dispersion and orientation of the
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inclusions [30,31]. However, due to the complicated interactions, it
is rather difficult to obtain a measurable conductivity in experi-
ment to evaluate to which extent of individual contribution to
adjust the microstructure and conductive network [32].

In this work, we employ the molecular dynamic simulation
method to deal with the issue by selective localization of conduc-
tive nanorods in one phase or at interface of immiscible diblock
copolymer. We focus on the morphologies of polymer nanocom-
posites, the dispersion and orientation of nanorods, and their con-
ductive probabilities by exploring the major influence factors,
including the aspect ratio of nanorods, the interaction strength of
nanofiller-polymer, the rigidity of two blocks, and the external ten-
sile force. Furthermore, we try to build up an open-and-shut
structure-property relationship with diagrams. Thus, this study is
expected to provide a theoretical guidance to obtain high conduc-
tive copolymer/nanorod composites over a wide range of block
copolymer systems.

2. Models and simulation methods

For simplicity, the diblock copolymer is described by a bead-
spring model [33]. Each polymer chain consists of 40 beads with
diameter and mass equal to r and m, respectively. The total num-
ber of simulated polymer beads is 24,000. The diameter of nanorod
bead also equals to r, and the number of beads per nanorod ranges
from 5 to 13. The truncated and shifted Lennard-Jones potential is
adopted to model non-bonded interactions, which is given by

UijðrÞ ¼ 4eij r
r�REV
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where eij denotes the interaction strength of different species, rcutoff
stands for the distance r at which the interaction is truncated and
shifted to make the potential continuous, rcutoff for A-block-B-
block is 21/6r. For the purpose of selective location of the nanorods
into the domain of B-block, rcutoff for A-block-nanorod and B-block-
nanorod are set to 21/6r and 2 � 21/6r, respectively. Thus, the A-
block is the nanorod-poor phase, while the B-block is the
nanorod-rich phase. All the interaction strengths are set to 1.0
except eij, which stands for the interaction between nanorod and
B-block in copolymer and varies to simulate different interfacial
interaction strengths.

The interaction between the adjacent bonded beads, including
both polymer chains and nanorods, is expressed by a harmonic
function

UbondðrÞ ¼ krðr � r0Þ2 ð2Þ

where kr is set to be 103 and 104 � e/r2 for polymer bonds and
nanorod bonds. The bond length, r0, is 1r for polymer bonds and
3r/4 for nanorod bonds. To obtain straight nanorods, a bending
potential is added with the form

UbendðhÞ ¼ khðh� h0Þ2 ð3Þ
where kh = 200e rad�2 and h0 = 180�. For a diblock copolymer chain,
the flexible segment and rigid one is connected with a free joint,
and a cosine bending potential between three neighboring beads
along the same polymer component can be given as follows

UbendðhÞ ¼ khð1þ cos hÞ ð4Þ
where kh = 0 for the flexible segment and kh = 10e for the rigid one.
In the following discussion, three different systems have been
considered: flexible-flexible copolymer in which both A-block and
B-block are flexible, flexible-rigid copolymer in which A-block is

flexible but B-block is rigid, and rigid-flexible system where A-
block is rigid but B-block is flexible.

In NVT ensemble, the reduced density of polymer melt is fixed
at q⁄ = 0.85, which corresponds to a dense polymer. The tempera-
ture is fixed at T⁄ = 1.0 through the Nose-Hoover thermostat. Dur-
ing the simulation, periodic boundary conditions are adopted in all
three directions. The velocity–Verlet algorithm is applied to inte-
grate the equations of motion with a time step dt = 0.001, where
the time is reduced by the Lennard–Jones time (s). It should be
noted that we equilibrate all the structures over a long period of
time so that each chain moved at least 2Rg. Meanwhile, instanta-
neous values of the mean-square radius of gyration Rg

2 and the
mean-square chain end-to-end distance Re

2 are calculated to judge
whether the system is at equilibrium. The structural and dynami-
cal data are collected for ensemble average after equilibrium.

In order to investigate the effect of external tensile force, we
divide our simulations into two parts. At first, we perform the sim-
ulation without deformation in a cubic box. Then we consider the
deformation effect by setting the initial simulation box as rectangle
with the same volume of the cubic one, and the cell parameters are
determined based on the draw ratio. After tensile force, the rectan-
gular box is stretched into the cubic type. As a result, the relative
conductive probabilities are calculated in the boxes with the same
shape.

To determine whether the conductive network is formed, one
needs a criterion to judgewhether any two nanorods are connected.
According to the literature [34], there are three patterns of nanorod
connection: (a) body-to-body; (b) end-to-end; (c) end-to-body.
Tunnel conductivity theory and field launch theory [35,36] point
out that any two nanorods can be connected if the shortest gap is
less than the tunneling distance. The tunneling distance is not a
fixed value. Herewe choose 1.0r from two aspects (one is in consid-
eration of the sandwiched polymer chain; the other is that the ratio
of the diameter of the nanotube to themaximum tunneling distance
is nearly 1.0 [37]). We note that it merely affects the absolute prob-
abilities but does not influence their regularities.

At the beginning of the computational implementation, each
nanorod is assigned a site number and a cluster number. The site
number is equal to the cluster number, ranging from 1 to N, where
N is the total number of the nanorod. Then each nanorod is checked
for connectionwith others. If two nanorods are connected, theywill
be assigned a common cluster number which is the smaller one of
these two nanorods. Finally, all the nanorods with the same cluster
number are in the same cluster. Therefore, different clusters are not
connected. Once the network of nanorods spans one direction con-
tinuously fromone side to the other, the system is conductive in this
direction, whereas the polymer nanocomposite still acts as an insu-
lator in other directions. In other words, the conduction is direc-
tional. If the nanorods network spans three-dimensional
directions continuously, the system is homogeneously conductive.

At least 20 independent simulations are performed for each
case to decrease the statistical error. After equilibration, more than
10,000 final configurations are dumped. The interval between any
two adjacent frames is ls. The probability of conductive network
formation is defined by the ratio of the number of the conductive
frames to that of all frames. Finally, the number of the configura-
tion, which is conductive in three-dimensional directions or in
stretching direction, is counted, and the homogeneous probability
or directional probability is determined to represent three-
dimensional or one-dimensional conductivity.

3. Result and discussion

For the considered systems, it has proven that selective localiza-
tion of conductive fillers in a continuous block of diblock copoly-
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