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a b s t r a c t

We present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity
quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-
cost accurate predictions of the bandgaps at the highest fidelity level. In addition, the adopted
Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure
of our confidence in the predictions. Using a set of 600 elpasolite compounds as an example dataset and
using semi-local and hybrid exchange correlation functionals within density functional theory as two
levels of fidelities, we demonstrate the excellent learning performance of the method against actual high
fidelity quantum mechanical calculations of the bandgaps. The presented statistical learning method is
not restricted to bandgaps or electronic structure methods and extends the utility of high throughput
property predictions in a significant way.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Owing to its central role in modern device physics, energy har-
vesting, energy storage, catalysis and other technologically rele-
vant applications [1], the bandgap often serves as a crucial
screening parameter in rational design of functional materials
[2–4]. As available experimental data for bandgaps is generally
limited [5,6], it is not surprising that a number of recent high
throughput chemical space explorations, in search of compounds
with improved functionalities, have targeted the calculation of
the bandgap [7–16].

Given that accurate calculations of bandgaps are time consum-
ing and resource intensive, we demonstrate in this paper the use of
a statistical learning method that generates machine-learned mod-
els to obviate the costs of such calculations. The multi-fidelity
method presented combines many inexpensive lower accuracy
computations of bandgaps with fewer expensive higher accuracy
computations to predict bandgaps whose accuracies are compara-
ble to those produced by the higher accuracy calculations alone.
The greater the difference in the costs of the calculations, the
greater is the cost advantage of the method we demonstrate.
Because a natural and well documented accuracy hierarchy exists
for bandgap calculation methods, bandgap computations are

natural for the method presented. In principle, the method can
be applied to the predictions of computed or experimental proper-
ties where the data is grouped into different levels of accuracy.

Our approach takes available bandgap prediction methods from
different levels of theories with different fidelities to estimate
bandgaps at the fidelity level of the more accurate and computa-
tionally expensive theory. On one end of the fidelity spectrum,
we may have surrogate models, perhaps obtained via high
throughput computations, but less trustworthy or known to be
inaccurate. On the other end, we may have high-fidelity models
that enable quite accurate estimates. In the present context of
quantum mechanical computations of bandgaps, the variable fide-
lity can be thought of as bandgaps computed from different levels
of exchange correlation functionals within DFT [17–20], as cre-
atively captured in Jacob’s ladder of density functional approxima-
tions put forward by Perdew (Fig. 1) [21] as well as expressed by
the spectrum of beyond-DFT approaches such as the GW method
[22,23], Møller-Plesset perturbation theory (MP2) [24], and config-
uration interaction (CI) [25].

We use the statistical learning approach of multi-fidelity co-
kriging on a data set of 640 double perovskite halide compounds
for which the bandgap energies can be calculated with two levels
of fidelity (the lower fidelity Perdew-Burke-Ernzerhoff (PBE) [19]
and higher fidelity Heyd-Scuseria-Ernzerhof (HSE06) [17]
exchange-correlation functional approximations). We make pre-
dictions of the HSE06 bangap energies by considering different

http://dx.doi.org/10.1016/j.commatsci.2016.12.004
0927-0256/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: gpilania@lanl.gov (G. Pilania).

Computational Materials Science 129 (2017) 156–163

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2016.12.004&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2016.12.004
mailto:gpilania@lanl.gov
http://dx.doi.org/10.1016/j.commatsci.2016.12.004
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


numbers of the PBE bandgaps in the combined data in which the
number of high fidelity bandgaps is a subset of the low fidelity
ones. One of our central conclusions is not surprisingly that the
accuracy of the prediction increases as the number of high fidelity
bandgaps increases in the training set. A second conclusion is,
more importantly, that the accuracy of the predictions increases
as the number of low fidelity data increases in the training set.
We deduce these conclusions from heat maps of the mean square
error in the HSE06 predictions, made by our trained learning model
on unseen data, as a function of the number of low fidelity data
points and the relative proportion of high fidelity data used.

Our approach is markedly different from other multi-fidelity
approaches in the literature which are based on using low fidelity
data (e:g., PBE bandgaps) as features in the machine learning (ML)
model [26] and therefore strictly require low fidelity data for all
materials for which predictions are to be made using the trained
model. This can be particularly challenging and extremely computa-
tionally demanding when faced with a combinatorial problem that
targets exploring a vast chemical and configurational space. Here,
we present a framework for a multi-fidelity Gaussian process (GP)
based ML regression model that seamlessly combines bandgap
inputs from two ormore levels of fidelities tomake accurate predic-
tions of the bandgaps for the highest fidelity. Furthermore, adopting
a nested setting for variable-fidelity training data, the model
requires high-fidelity training data only on a subset of compounds
forwhich low-fidelity training data is readily available.More impor-
tantly, the trainedmodel canmake efficient yet accurate predictions
for the highest-fidelity bandgaps even in the absence of the low-
fidelity bandgap data for the prediction set compounds. In addition
to the bandgap predictions obtained with lower cost, the adopted
GP-regression framework also allows us to predict the underlying
uncertainties as a measure of our confidence in the predictions.

The outline of our paper is as follows. In Section 2 we review
multi-fidelity approaches (as they have been studied in the engi-
neering context) and DFT methods. We also introduce and discuss
the co-kriging approach which we utilize in this study. This
introduction is followed by a description of the data set of double
perovskites and the features used to the train the Gaussian model
used in co-kriging. We also provide the computational details

underpinning our DFT calculations. Section 3 presents and dis-
cusses the results of our calculations as we show how our predic-
tions of the bandgaps are successively refined depending on the
data sizes of the low and high fidelity data. Finally, Section 4 con-
cludes and discusses the significance and implications of our work.

2. Background and methodology

2.1. Motivation and past work

Fueled by recent advances in methodologies and computational
power, density functional theory (DFT) has become a standard
workhorse for ab initio electronic structure calculations, providing
the best trade-off between predictive accuracy and computational
efficiency [27]. While the standard implementations of DFT are
widely employed to compute structural, electronic, electrical, mag-
netic and other properties of plethora of materials, they suffer from
a well known deficiency (also known as the ‘‘bandgap problem”)
[28] in which DFT within local or semi-local exchange-
correlation functionals fails to correctly predict the energy gaps
between occupied and unoccupied states. In fact, the experimental
bandgap �exp is often severely underestimated by the Kohn-Sham
gap �KS. This underestimation is attributed to the inherent lack of
derivative discontinuity [29] and delocalization error [30,31]
within the local or semi-local exchange-correlation functionals
such as the local density approximation (LDA) or the generalized
gradient approximation (GGA) [32].

For the exact Kohn-Sham formalism, the physical gap equals �KS
plus the derivative discontinuity of the exchange-correlation (xc)
energy with respect to the number of electrons [29,33,34]. In a
non-exact KS approach with an approximate xc energy functional,
the above relation may not be exact and, in addition, the approxi-
mate functional may not reproduce the correct xc energy deriva-
tives [30,31]. Correction techniques such as the DFT + U can
improve the KS gap only to a limited extent [35]. Recently devel-
oped more advanced exchange-correlation functionals, such as
the modified Becke-Johnson (mBJ) functional by Tran and Blaha
[36] and strongly constrained and appropriately normed (SCAN)
[37] meta-GGA, certainly improve over the classic LDA and GGA
functionals, but do not completely alleviate the problem. Several
other alternative approaches are frequently employed to address
the bandgap problem, including the delta self-consistent-field (D-
SCF) method [38], hybrid functional methods [17] and the quasi-
particle GW calculations based on the many-body perturbation
theory [39]. The D-SCF formalism requires the evaluation of the
total energy at three different numbers of electrons (N, N + d, and
N � d), N being the number of electrons in the neutral ground state.
d – representing the amount of charge added or removed to simu-
late the excitation process – depends on N and is determined
empirically to best yield the experimental bandgap. While the D-
SCF method is not entirely parameter-free, the latter two
approaches – although capable of providing bandgap estimates in
good agreement with the corresponding experimental measure-
ments – suffer from high computational costs.

ML methods have recently had phenomenal success in con-
densed matter physics and materials science for high throughput
screening and accelerated property predictions [40–42]. Even with
a limited set of prior data to train on, ML-based approaches have
been successfully employed, for instance, to accurately estimate
a wide range of material properties for molecular [43,44] and peri-
odic systems [7,45], to develop adaptive force fields [46,47], to
devise schemes for crystal structure classifications [48–50], to pre-
dict dielectric breakdown strength of insulators [51,52] and to
enable alternative self-consistent solutions for quantum mechan-
ics [53].

Fig. 1. Jacob’s ladder of density functional approximations to the exchange-
correlation energy (as put forward by Perdew, adapted from Ref. [21]) presents a
prototypical example of multi-fidelity computations of materials properties, where
a natural hierarchy exists in both the computational cost and accuracy. The present
study demonstrates the effectiveness of multi-fidelity ML approach for a bandgap
dataset of elpasolite compounds computed at the GGA and the hybrid functional
levels. Symbols n; �x and /i in the figure represent the ground state charge density,
the exact exchange and Kohn–Sham orbitals, respectively.

G. Pilania et al. / Computational Materials Science 129 (2017) 156–163 157



Download English Version:

https://daneshyari.com/en/article/5453464

Download Persian Version:

https://daneshyari.com/article/5453464

Daneshyari.com

https://daneshyari.com/en/article/5453464
https://daneshyari.com/article/5453464
https://daneshyari.com

