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a b s t r a c t

This paper introduces a two-scale concurrent topology optimization method for maximizing the fre-
quency of composite macrostructure that are composed of periodic composite units (PCUs) consisting
of two isotropic materials with distinct Poisson’s ratios. Interpolation of Poisson’s ratios of different con-
stituent phases is used in PCU to exploit the Poisson effect. The effective properties of the composite are
computed by numerical homogenization and integrated into the frequency analysis. The sensitivities of
the eigenvalue of macro- and micro-scale density are derived. The design variables on both the macro-
and micro-scales are efficiently updated by the well-established optimality criteria methods. Several
2D and 3D illustrative examples are presented to demonstrate the capability and effectiveness of the pro-
posed approach. The effect of the micro-scale volume fraction and Poisson’s ratio of the constituent
phases on the optimal topology are investigated. It is observed that higher frequency can be achieved
at specific range of micro-scale level volume fraction for optimal composites than that obtained from
structures made of individual base materials.

� 2016 Published by Elsevier B.V.

1. Introduction

The optimization of frequency is of major importance for many
engineering applications in aeronautics, astronautics and automo-
tive industries. Amongst various methods, topology optimization
techniques, as one of the most promising tools, have been devel-
oped in the past few decades to find the optimal layouts. A compre-
hensive review on topology methods for solving vibration
problems in structural designs was presented in literature [1]
including homogenization method [2–4], evolutionary structural
optimization method [5,6], solid isotropic material with penaliza-
tion method (SIMP) [7,8] and level set method [9]. Meanwhile,
topology optimization combined with inverse homogenization
technique also has broad applications in microstructural design
of cellular and composite materials. More recently, to reduce the
vibration level, Andreassen et al. [10] proposed a method to opti-
mize the microstructure of viscoelastic composites, which maxi-
mized the damping capabilities of composites considering the
manufacturability. Huang et al. [11] extended the bi-directional
evolutionary structural optimization (BESO) method for designing

microstructures of viscoelastic composites with high damping
characteristics. Jensen and Sigmund [12] employed the topology
optimization method to design a T-junction in a photonic crystal
waveguide based on band gap structure. Meng et al. [13] proposed
a BESO design method for the photonic crystals with negative
refraction properties.

However, the aforementioned research are restricted to individ-
ual macro-structural optimization or micro-scale material opti-
mization, i.e. designing the macrostructures composed of
homogeneous materials, or designing the microstructures for the
expected or extremal properties individually. Rodrigues et al.
[14] initially generalized a hierarchical optimization formulation
for optimizing material distribution in both macrostructure and
microstructure. Coelho et al. [15] extended this hierarchical com-
putational procedure to 3D elastic structures. However, micro-
structural topologies may vary arbitrarily in space and result in
high computational cost and less manufacturability. Liu et al.
[16] proposed a concurrent topology optimization model where
microstructure is assumed to be identical to each other in the
macrostructure and periodically distributed. Independent relative
densities for the macrostructure and microstructure are defined
and coupled into an integral system through homogenization the-
ory. The extension of this approach seeking for maximum primary
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frequency was given by Niu et al. [17]. Yan et al. [18,19] presented
a concurrent topology optimization strategy for minimum compli-
ance of thermo-elastic structures. In their numerical results, the
porous material showed advantages in reducing the system com-
pliance when simultaneously considering the mechanical and ther-
mal loads. Guo et al. [20] presented a robust concurrent
optimization formulation to find optimal material and structure
simultaneously considering the uncertainties of loads. It was
observed that the microstructures are generally isotropic and in a
form of Kagome structure under such uncertainties. Huang et al.
[21] utilized the BESO method for realizing the concurrent opti-
mization design. Unambiguous configurations on both macro-
and micro- scales are obtained within BESO framework. Zuo
et al. [22] introduced a hierarchical design model containing mul-
tiple material phases on both the macrostructure and microstruc-
ture. Yan et al. [23,24] presented a concurrent optimization
algorithm where only one total mass constraint on material usage
was applied. Liu et al. [25] also proposed a concurrent topology
optimization model to maximize natural frequency with a given
mass. Xu et al. [26–28] extended the BESO method to concurrent
topology optimization in regard to material distribution in
macrostructure and periodic microstructure under harmonic, tran-
sient and random excitations. They also discussed the concurrent
design of thermo-elastic structures composed of periodic multi-
phase materials [29]. Vicente et al. [30] presented concurrent
topology optimization models for minimizing the frequency
responses. Zhang and Sun [31] revealed the size effect of materials
and structures in the integrated two-scale optimization approach.
More recently, Xia et al. [32–34] proposed a FE2 resolution frame-
work where the nonlinearity was addressed for the concurrent
design of materials and structures. Jia et al. [35] presented a hier-
archical design of structures and multiphase material cells. In the
model, the macro- and micro-scales design variables were linked
by elemental phase density. The hierarchical optimization model
of structures and multiphase cells is built under prescribed volume
fraction and mass constraints.

Composite materials usually combine two or more constituent
phases with significantly different characteristics, which may have
preferable properties over conventional materials. Recent studies
showed that the Poisson’s ratio of base material played critical role
on mechanical properties of composites. Liu et al. [36] observed
significantly increased stiffness in two principle directions of stag-
gered biocomposites when the Poisson’s ratio of soft constituent
phase approaching the incompressibility limit of 0.5. Similar
increase in stiffness was found in laminate composites with alter-
nating layers of materials with negative Poisson’s ratio (NPR) and
positive Poisson’s ratio (PPR) [37–39]. Long et al. [40] proposed a
topology optimization algorithm to acquire the maximum effective
Young’s modulus. Other similar research also proposed the
methodology for designing high-stiffness composites by consider-
ing Poisson effect [41].

The above studies [36–41] focused on the design of high-
stiffness composite constructed by constituent phases of distinct
Poisson’s ratios. However, topology optimization of macrostruc-
ture composed of such composites might not bring optimal solu-
tions when considering complex boundary conditions. In this
study, we employ topology optimization technique in the concur-
rent design of macrostructure and periodic microstructure of com-
posites containing multiple phases with different Poisson’s ratios.
The rest of this paper is structured as follows. Section 2 formulates
the concurrent topology optimization algorithm for maximizing
the natural frequency of macrostructure. Section 3 describes the
homogenization method for effective material properties and sen-
sitivity analysis with respect to macro- and micro-scales design
variables. Section 4 describes the filtering schemes to eliminate
the numerical instabilities and the optimality criteria method. Sec-

tion 5 presents four numerical examples to validate the effective-
ness of the proposed optimization method. Section 6 summarizes
the main findings.

2. Concurrent topology optimization for maximum natural
frequency

In this paper, it is assumed that the macrostructure of a com-
posite which is composed of periodic composite units (PCUs) as
indicated in Fig. 1. Both macrostructure andmicrostructure are dis-
cretized by finite element (FE). Each element on macro-scale or
micro-scale level is assigned an exclusive relative density, i.e.
macro-elemental density Pi (i = 1,2, . . .,M) or micro-elemental den-
sity rj (j = 1,2, . . .,N), whose value is either 0 or 1, where M and N
are the total number of elements in macrostructure and
microstructure, respectively. In the PCU, when the jth element is
occupied by phase 2, rj = 0, while rj = 1 when it is occupied by
phase 1.

The concurrent topology optimization aims at finding the max-
imum kth order frequency of the macrostructure. The optimization
problem can be mathematically expressed as:

Find : X ¼ fPi; rjg; ði ¼ 1;2; . . . ;M; j ¼ 1;2; . . . ;NÞ
Maximize : kk
Constraint I : Kuk ¼ kkMuk

Constraint II :
XM
i¼1

PiVi=V
mac 6 f mac

Constraint III :
XN
j¼1

rjV j=V
mic 6 f mic

Constraint IV : Pmin 6 Pi 6 1; rmin 6 rj 6 1

ð1Þ

where kk and uk denotes the kth order macrostructural eigenvalue
and its corresponding eigenvetor. K and M are the global stiffness
and mass matrices of the macrostructure. Constraints II and III
describe the volume fraction in macrostructure and microstructure
respectively. Vi and Vj denote the volume of the ith macro-scale ele-
ment or the jth micro-scale element, respectively. Vmac and Vmic

denote the total volume of the macrostructure or the microstruc-
ture, respectively. fmac and fmic denote the prescribed volume frac-
tion on macro- and micro-scale level, respectively. Constraint IV
defines the bounds for design variable to ensure the non-
singularity in numerical analysis. The minimum density Pmin = -
rmin = 10�3 is chosen in this paper.

The global stiffness and mass matrices are assembled by the
elemental stiffness matrix Ki and mass matrix Mi, respectively,

K ¼
XM
i¼1

K i ¼
XM
i¼1

Z
Vi

BTDMA
i BdVi ¼

XM
i¼1

Z
Vi

BTðPp
i D

HÞBdVi ð2Þ

M ¼
XM
i¼1

Mi ¼
XM
i¼1

Z
Vi

NTqMA
i N dVi ¼

XM
i¼1

Z
Vi

NTðPiqHÞN dVi ð3Þ

where B and N denote the strain-displacement matrices and shape
function matrices on the macro-scale level. DMA

i and qMA
i denote the

elasticity matrix and density for the ith element in macrostructure.
DH and qH denote the effective elasticity matrix and homogenized
density computed through the standard homogenization theory
within PCU. p is penalization power for elemental stiffness matrix.
In this study, we found that p = 3 could have good convergence
and clear topologies. The localized mode or pseudo mode is the
eigenmode occurred in domains occupied by the elements with
low densities. Usually the corresponding frequencies are very low,
which are undesirable in the frequency optimization problem [7].
In local mode, the elemental stiffness can be modified to keep the
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