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a b s t r a c t

We present a detailed analysis of entropy reconstruction from a velocity autocorrelation function in
molecular dynamics simulation for solid and liquid states. The reconstruction is based on the vibrational
density of states (VDOS) and for the liquid phase is known as a two-phase thermodynamic (2PT) model.
We show that adequate accuracy of VDOS is required for successful application of this technique in the
solid phase. We study the convergence of VDOS and entropy on the number of particles, time step and
simulation time using aluminum as an example. We also examine the influence of temperature upon
VDOS. Our analysis demonstrates that systems containing less than 500 atoms of aluminum do not repro-
duce the phonon density of state (PhDOS) of the crystal. Nevertheless the error of entropy calculation
decreases quickly with the increase of the number of particles in simulation. We note strong influence
of high temperatures on VDOS and the difference between VDOS and PhDOS near melting. We show that
a time step of 0.5 fs or less and trajectories of more than 10,000 time steps are required to obtain good
accuracy of entropy in the solid phase. We use quantum molecular dynamics and the 2PT model with a
memory function representation for the gas-like component to obtain a new point on the melting curve
of aluminum at a pressure of 171 GPa, that agree well with previous experimental works and
calculations.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical determination of solid–liquid phase boundaries is a
long–standing problem in physics. A number of approaches exist in
order to predict melting curves, however most of them require sig-
nificant computational resources to achieve sufficient accuracy.
Two groups of methods are usually considered. The first group
studies conditions of stability of only one phase, while in the sec-
ond liquid and solid phases are both taken into account. Vivid
examples of the one-phase approach are direct molecular dynam-
ics (MD) methods such as HUM (heat until it melts) [1], the
Z-method [1–3] or the quasiharmonic approach based on the
Lindemann criterion [4,5]. A direct simulation of two phases in
coexistence [6–9] or a computation of the Gibbs potentials of both
phases at the same pressure and temperature [10] are typical two-
phase methods.

The shortcoming of the HUM approach is an overestimation of
melting temperature. The Z method is more precise, however it

is expensive computationally and requires various corrections
[11,12]. The Lindemann criterion in the framework of the quasihar-
monic approximation gives good results for metals [5] but not for
compounds [13]. A simulation of two phases in equilibrium pro-
vides quite good results in comparison with experiment, but
requires very long and accurate computations [7]. A recent statis-
tical solid-liquid coexistence method seems to provide good accu-
racy with much lower computational cost, because the
convergence of melting temperature is reached for simulations
with only several hundreds atoms [14]. However the two-phase
approach does not provide any information about entropies or free
energies of the two phases.

Direct reconstruction of melting curves based on the equality of
Gibbs energy for both phases sets a complicated task of entropy
calculation, that remains the major impediment of this method.
A rigorous technique of thermodynamic integration [15] is one of
the best solutions to this problem however it is very challenging
in realization, because it requires a considerable auxiliary architec-
ture of tools, the choice of a good reference system for the problem
at hand, and numerous integration points along the thermody-
namic integration path. Another approach to compute liquid-
state free energy is the Widom’s particle insertion method, in
which free energy is calculated through inserting a test particle
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into a liquid [16,17]. Recently this method has been applied to
first-principle calculations [18,19]. Compared to the thermody-
namic integration approach, the Widom’s method holds a great
advantage, since it does not require any reference system, but it
is also computationally expensive.

A little more than ten years ago a promising approach to the
direct calculation of entropy was suggested by Lin et al. [20]. This
method uses a single simulation to compute entropy of a system
through a decomposition of vibrational density of state (VDOS)
or a vibrational spectrum (VS) into solid-like and gas-like subsys-
tems, therefore it is called a two-phase thermodynamic (2PT)
method. This method was developed and validated within the
Lennard-Jones system, but in a short time it has been successfully
applied to a wide variety of systems, including molecules [21] and
mixtures [22]. On the one hand, the main advantage of the 2PT
method is obviously its relative simplicity. On the other hand, this
model is not rigorously substantiated and is sensitive to the choice
of approximation for the gas-like component. It was shown that
the hard sphere (HS) fluid approximation suggested by Lin et al.
for the gas-like subsystem overestimates entropy for liquid metals
[10,23]. A memory function (MF) representation for the gas-like
component seems to solve this problem [10].

Thus the actively developing 2PT method has shown its avail-
ability for the entropy calculation of liquid. However, the entropy
computation in the solid phase is not so easy as it may seem. Of
course, the quasiharmonic approximation is a promising tool for
this problem, because it allows to calculate the total free energy
of a crystal, so it is possible to obtain all thermodynamic properties
in a crystalline state. But in case of high temperatures close to
melting the influence of anharmonic effects can be substantial, so
additional methods and calculations may be necessary to deter-
mine the anharmonic contribution to free energy [24–26]. The
use of a combination of quasiharmonic phonon calculations fol-
lowed by the thermodynamic integration is another approach to
the problem [10].

In the 2PT method for a solid state the gas-like part is negligible.
In this case a real VS is used for the calculation of entropy of the
solid phase and effects of anharmonicity will be taken into account
automatically. Therefore we can expect that the 2PT approach will
be more proper at high temperatures than the quasiharmonic
approximation which is based on the linear response theory.

An example of the entropy calculation of the solid phase
through the VS was given by Lin et al. [20]. Using this technique
possibility of calculation of melting curve was demonstrated
recently by Robert et al. [27]. However the convergence of VDOS
calculations in the crystalline state using MD modeling has not
been properly investigated yet. In this work we study the problem
of convergence of VDOS in the solid state on the number of parti-
cles, temperature and simulation time using classical MD calcula-
tions. We also show the applicability of the 2PT model in both
solid and liquid states for simulation of melting of aluminum by
quantum molecular dynamics (QMD).

2. Two-phase thermodynamic model, VDOS and entropy

The 2PT model is based upon the velocity autocorrelation func-
tion (VACF) and its frequency Fourier transform known as VDOS.
Both values may be obtained from temporal trajectories of parti-
cles from MD simulations. In a crystalline state, however, there
are alternative approaches to compute the VDOS as one should
analyze only the vibrational movement of particles. A good approx-
imation is to consider the harmonic vibrations; in this case only
small displacements of particles from their equilibrium positions
are taken into account. The shifts of the particles create small
forces from which one can compute the dynamical matrix and

the so-called phonon density of states (PhDOS) using the linear
response theory. On the other hand, this approach may become
ill-conditioned in case of bad accuracy of calculations [28]. In
quantum computations this problem is avoided in the framework
of the density functional perturbation theory (DFPT) which is
widely applied for crystals with simple unit cells [29]. However,
the computational cost of DFPT for large systems can be very high,
so that QMD becomes more preferable. Moreover the VS recon-
structed from the QMD VACF automatically includes anharmonic
oscillations.

The VDOS function FðmÞ can be obtained by the Fourier trans-
form of the VACF ZðtÞ:

FðmÞ ¼
Z 1

�1
ZðtÞexp�i2pmt dt; ð1Þ

with

ZðtÞ ¼ hvðtÞ � vð0Þi
hvð0Þ � vð0Þi : ð2Þ

As can be seen from (2) the definition of ZðtÞ contains a normal-
ization factor such that Zð0Þ � 1. The integration of the VDOS func-
tion over positive frequencies gives the total number of degrees of
freedom of the system. Thus FðmÞ as defined here has the following
normalizationZ 1

0
12FðmÞdm ¼ 3: ð3Þ

Following Lin et al. the total spectrum is decomposed into the
solid-like (FsðmÞ) and gas-like (FgðmÞ) components

FðmÞ ¼ ð1� f gÞFsðmÞ þ f gFgðmÞ: ð4Þ
The total ionic entropy is decomposed into two terms as well

Si ¼ Ss þ Sg ð5Þ
and Ss and Sg in turn can be written as integrals with appropriate
weighting functions

Ss ¼ Nk
Z 1

0
12½FðmÞ � f gFgðmÞ�WsðmÞdm; ð6Þ

Sg ¼ f gNk
Z 1

0
12FgðmÞWgdm; ð7Þ

where the weighting function for the solid-like component is given
by a quantum-corrected one-phase thermodynamic model

WsðvÞ ¼ hv=kT
expðhv=kTÞ � 1

� ln½1� expð�hv=kTÞ�: ð8Þ

The gas-like component can be described as the HS system [20]
or using the MF representation [10].

3. Simulation parameters

In this work classical MD simulation was performed by the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [30]. For metals, an embedded atom model (EAM)
[31] is a good approximation that accounts for both a pair-wise
interaction and a contribution of the electron charge density from
nearest neighbors of an atom under consideration. We use an EAM
potential of Zhakhovskii for aluminum [32]. This potential repro-
duces mechanical and thermodynamic parameters at normal con-
ditions, gives a good agreement with the cold and Hugoniot curves,
and describes well the phase diagram of aluminum [33]. The clas-
sical PhDOS is retrieved directly from MD simulation in the frame-
work of the fluctuation-dissipation theory; the FixPhonon module
of the LAMMPS code is used for this purpose [34].
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