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a b s t r a c t

In molecular dynamics (MD) simulation, atomic interaction is characterized by the interatomic potential
as the input of simulation models. The interatomic potentials are derived experimentally or from first
principles calculations. Therefore they are inherently imprecise because of the measurement error or
model-form error. In this work, a Reliable Molecular Dynamics (R-MD) mechanism is developed to
extend the predictive capability of MD given the input uncertainty. In R-MD, the locations and velocities
of particles are not assumed to be precisely known as in traditional MD. Instead, they are represented as
intervals in order to capture the input uncertainty associated with the atomistic model. The advantage of
the new mechanism is the significant reduction of computational cost from traditional sensitivity anal-
ysis when assessing the effects of input uncertainty. A formalism of generalized interval is incorporated
in R-MD, as an intrusive uncertainty quantification method, to model the propagation of uncertainty dur-
ing the simulation. Error generating functions associated with embedded atomic method (EAM) inter-
atomic potentials are developed to capture the bounds of input variations to demonstrate interval
interatomic potentials. Four different uncertainty propagation schemes are proposed to capture the
uncertainty of the output. An example of uniaxial tensile loading of single-crystal aluminum is used to
demonstrate the R-MD mechanism.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Modeling and simulation tools are crucial for engineers to
design and develop new materials efficiently. Uncertainty is
always involved in model selection, calibration, and validation pro-
cesses. Reliable simulation predictions require us to quantify input
uncertainty of models. There are two elements of uncertainty in
modeling and simulation: aleatory uncertainty and epistemic
uncertainty. Aleatory uncertainty is the inherent randomness in
the phenomenon being observed, and the impossibility of exhaust-
ing all descriptions deterministically. Epistemic uncertainty can be
generally related to the lack of perfect knowledge about the
involved physical processes [1].

Molecular dynamics (MD) is one of the most widely used ato-
mistic simulation tools. In MD simulation, the aleatory uncertainty
corresponds to any fluctuation of the simulated system, e.g. the
natural thermal fluctuation that can be described by Boltzmann
distribution at an equilibrium microscopic state. The epistemic
uncertainty includes, but is not limited to, the imprecise

interatomic potentials, the finite size effect, the boundary condi-
tion imposed on the simulation cell, and the cutoff radius of the
interatomic potentials. The aleatory uncertainty associated with
the thermal fluctuation is generally inseparable from MD simula-
tion, and sometimes is induced by the ensemble integrator. For
example, in Langevin thermostat, this thermal fluctuation is
accounted by the friction-noise in the stochastic differential equa-
tions [2]. The epistemic uncertainty in MD simulations is mostly
caused by the imperfection of the interatomic potential. These
interatomic potentials are typically derived from first principles
calculations or approximated based on experimental data. These
results are contaminated by both systematic and random errors.
The systematic errors of first principles calculations come from dif-
ferent approximations and assumptions in the models, such as
Born-Oppenheimer approximation, Hartree-Fock approximation,
and the assumed finite linear combination of the variational solu-
tion based on the set of basis functions [3]. On the other hand, the
systematic errors of experimental results involve measurement
bias and calibration errors. Based on the results, an interatomic
potential model is formulated with a set of parameters to minimize
a measurable error, which usually in turn is converted to a least-
square error problem. Because of the non-negative residual in
curve fitting and approximation error techniques used in deriving
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the interatomic potentials, MD simulations include both model-
form uncertainty and parameter uncertainty. Furthermore, the
epistemic uncertainty from interatomic potential in MD simula-
tions is amplified because the number of interacting pairs, which
scales at least as N2, where N is the number of atoms. Therefore,
quantifying uncertainty in MD simulations is a critical problem,
in both assessing the accuracy and reliability of the simulation
prediction.

Uncertainty quantification (UQ) problems are divided into two
main paradigms, intrusive and non-intrusive methods on proba-
bilistic and non-probabilistic frameworks. In non-intrusive UQ
techniques, the simulation is viewed as a black box, and the simu-
lator is modeled as a one-to-one non-linear function that maps
from the input domains to the output or quantities of interests.
Popular techniques, including stochastic collocation, Monte Carlo,
and global sensitivity analysis, rely on statistical techniques to
build comprehensive output distributions based on the assumed
input distributions. Generalized polynomial chaos expansion is a
widely used technique, and can be utilized either intrusively or
non-intrusively. As an intrusive technique, it has been applied to
solve stochastic differential equations and partial differential equa-
tions with random inputs. As a non-intrusive technique, it is typi-
cally used together with Smolyak sparse grid and nested sets in
stochastic collocation methods.

Other intrusive UQ techniques, such as local sensitivity analysis
and interval-based approaches, aim to provide the output proba-
bility density function or its bounded support for expensive simu-
lation by incorporating and propagating the uncertainty internally
using minimal number of runs. In interval-based approaches, the
uncertainty is coupled into the input and represented by intervals.
The simulator is thus extended to handle the interval inputs and
propagate the uncertainty throughout the simulation. The output
uncertainty, which is also represented as intervals, is computed
at every time step at a relatively cheap computational cost.

Various UQ methods have been applied to multi-scale simula-
tion for materials. Comprehensive literature reviews are available
in [4,5]. Frederiksen and Jacobsen [6] applied Bayesian update to
train the interatomic potentials parameters with experimental
data sets by minimizing the square error between experimental
data and simulation results. Jacobson et al. [7] constructed
response surfaces with Lagrange interpolation to study the sensi-
tivity of macroscopic properties with respect to interatomic poten-
tial parameters. Cailliez and Pernot [8] calibrated Lennard-Jones
potential for Argon based on Bayesian calibration/prediction
framework. Rizzi et al. [9,10] assumed uniform distribution for
the four-site, TIP4P, water model parameters and constructed the
generalized polynomial chaos representation by non-intrusive
spectral projection and Bayesian inference approaches, then later
on, calibrated these force-field parameters based on Bayesian
inference. Angelikopoulos et al. [11] applied the Bayesian calibra-
tion to calibrate the water-carbon interactions based on water con-
tact angles in water wetting of graphene, the aggregation of
fullerenes in aqueous solution, and the water transport across car-
bon nanotubes. Rizzi et al. [9] applied polynomial chaos expansion
to study the effect of input uncertainty in MD. Cailliezf et al. [12]
applied the efficient global optimization algorithms in parameter
space to calibrate the potential parameters for TIP4P model, based
on probabilistic kriging metamodels. Wen et al. [13] studied the
effect of different spline interpolations on the potential predictions
by calculating the quasi-harmonic thermal expansion and finite-
temperature elastic constant of a one-dimensional chain in tabu-
lated interatomic potentials. Hunt et al. [14] developed a software
package for non-intrusive propagation of uncertainties in input
parameters, using surrogate models and adaptive sampling meth-
ods, such as Monte Carlo, Latin Hypercube, and Smolyak sparse

grids, based on generalized polynomial chaos expansion. Li et al.
[15] discussed the cut- and random sample-high dimensional
model representation to quantify the uncertainty induced by
potential surfaces.

As an intrusive approach on non-probabilistic framework, we
recently proposed an interval-based reliable MD (R-MD) mecha-
nism [16,17] that incorporates Kaucher interval arithmetic [18]
into classical MD to quantify output uncertainty. Classical interval
arithmetic provides a complete solution by capturing all possibili-
ties for simple algebraic operations, such as addition, subtraction,
multiplication, and division. Kaucher interval arithmetic general-
izes and extends [19] classical interval arithmetic with better
topology and algebraic properties. Compared to classic interval
arithmetic, Kaucher interval arithmetic is preferred for three rea-
sons. Firstly, the over-estimation problem is significantly reduced.
Secondly, the self-dependency problem, which also results in an
over-estimation of a function, where dependent variables are
repeated more than once, is mitigated. Thirdly, the negation and
reciprocal operations with respect to addition and multiplication
exist. In contrast to the Kaucher interval space, the classical inter-
val space only forms a semi-group algebraic structure because of
the lack of invertibility. In R-MD, the input uncertainty associated
with interatomic potentials is captured in interval forms, either as
intervals or as interval functions. Consequently, the atomistic posi-
tions, velocities, and forces are also interval-valued. Fig. 1 plots a
schematic sketch of simple 2D R-MD simulation cell, where the
atomistic positions are interval-valued. The exact atomistic posi-
tions and velocities are unknown, but bounded by intervals. In this
paper, the details of how Kaucher interval arithmetic is applied in
simulation including interval potential, interval force computation,
and interval statistical ensemble are described. In Section 2, we
review the algebraic operations of Kaucher interval arithmetic. In
Section 3, the formulation of interval potential and interval force
are discussed, and four R-MD uncertainty propagation schemes
are implemented in the framework of Large-scale Atomic/Molecu-
lar Massively Parallel Simulator, also known as LAMMPS [20]. An
application to tensile uniaxial deformation of aluminum single
crystal is demonstrated in Section 4, including UQ results, compar-
isons between different schemes, finite-size effects, and compar-
ison with sensitivity analysis results as a part of verification
process. Following are the discussion in Section 5 and conclusion
in Section 6.

2. Kaucher interval arithmetic

The classical interval space, denoted as IR, is a collection of clas-
sical interval, where the upper bound is strictly greater than or

Fig. 1. Schematic illustration of R-MD in 2D.
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