
Size effects of shear deformation response for nano-single crystals
examined by the phase-field-crystal model

Wenquan Zhou a, Jincheng Wang a,⇑, Zhijun Wang a, Qi Zhang a, Can Guo a, Junjie Li a, Yaolin Guo b

a State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian 710072, PR China
bNingbo Institute of Industrial Technology, Ningbo 315201, PR China

a r t i c l e i n f o

Article history:
Received 17 August 2016
Received in revised form 20 October 2016
Accepted 22 October 2016

Keywords:
Nano-single crystal
Strain distribution
Aspect ratios
Size effects
Modified phase-field-crystal model

a b s t r a c t

Employing the modified phase-field-crystal (MPFC) model, we investigated the size effects of shear defor-
mation response on nano-single crystals by examining the elastic strain distribution at atomistic scales.
Here, three specimens with different aspect ratios are explored. Three types of shear deformation behav-
ior have been found, namely, bending, simple shear and the mixed-mode based on the competition of
bending and shearing. Further, a size scale analysis indicates that the slope of the shear strain response
curve decreased dramatically as the aspect ratio changed from 1 to 0.125. However, when the ratio
increased from 1 to 8, the slope increased slowly until saturated.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The degree of materials strengthening in a wide range of metal-
lic systems is highly dependent upon shapes, sizes and local vari-
ables of shearable precipitating nanoparticles (NPs). These NPs
can always be found in various cases, such as second phase precip-
itates in aluminum alloys [1–4], shear deformations in metallic
nanoparticles [5] and the laser pulse induced deformation of
nanoparticles [6]. Among them, shear deformation response of
NPs is an hot topic, and various models have been proposed to clar-
ify the strain response of NPs [2]. However, quantitative relation-
ship between the strain state and the shape or size of NPs in
experiments is still absent, especially for some intrinsically
strained or under external applied strain NPs. It is hard to charac-
terize the strain state using standard experimental techniques, as
the size of NPs is very small, usually ranged from few to a dozen
nanometers. Therefore, it is necessary to develop new valid meth-
ods to quantitatively characterize these strained NPs.

With the development of computer science, modeling and sim-
ulation has been a powerful tool in studying microstructure evolu-
tion of materials. At present, molecular dynamics (MD) method is
usually adopted to study deformation behaviors at atomic scales
[7,8]. However, the standard MD method is limited to a very short
time scale (Nano-second). This limitation is very severe in develop-

ing MD models to study the physical and mechanical behaviors of
nanostructured materials, where the relevant length scales are
atomic but the time scales are diffusional.

Progress toward alleviating this limitation has recently been
made by introducing a new methodology known as the phase field
crystal (PFC) model, which is an extension of the dynamical density
functional theory [9–11]. The PFC model was developed by Elder
et al. [9,12] and then subsequently applied to many situations such
as polycrystalline solidification [13,14], phase transitions [15],
fracture [16,17], elasticity [18], dislocation dynamics [19], and
vacancy dynamics [20]. Because the PFC model automatically con-
tains elasticity, the energy difference between the unstrained state
and the strained one, Df , can be expressed through a quadratic
function, related to the elastic constants. For a detailed calculation
of the elastic constants, the reader is referred to the work of
Pisutha-Arnold et al. [21]. Unfortunately, the original PFC model
evolves the mass density only at diffusive time scales, so it cannot
adequately describe elastic responses in strained crystals. In order
to overcome this drawback, Stefanovic et al. introduced a newly
modified phase field crystal (MPFC) that includes both diffusive
dynamics and elastic interactions [18,22,23].

In the present paper, in order to precisely characterize the strain
state of NPs, we will restrict NPs to the simple case where the par-
ticle could be considered as a nano-single crystal. Then the MPFC
model is employed to investigate the linear elasticity response pro-
cess in the nano-single crystal specimens with different aspect
ratios. We characterized the effects of length scales on the strain
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state of nano-single crystal quantitatively. This work can also
prompt the MPFC method to quantitatively investigate atomic
physical properties.

2. Model description and strain characterization

2.1. The MPFC model

In the PFC formalism, an order parameteru defined as the local-
time-averaged atomic number density is used to describe a mate-
rial state. In contrast to conventional phase field (PF) models, the
order parameter in PFC models is not a spatially constant, but exhi-
bits periodic modulations in a crystalline phase corresponding to
atomic positions. For simplicity, here we use the original dimen-
sionless free energy functional F [9,12]

F ¼
Z

r
2
u2 þ 1
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u4 þu
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where u is the rescaled time-averaged atom number density mea-
sured with respect to a reference liquid state, and r is a control
parameter, corresponding to a dimensionless temperature.

In the original PFC model, the dimensionless evolution kinetic
equation for the order parameter u is

@u
@t

¼ r2½ruþu3 þ ð1þr2Þ2u�; ð2Þ

The above kinetic equation propagates all disturbances (elastic and
plastic) diffusively. This would restricts the scope of reproducible
phenomena to those whose characteristic time is comparable to
the diffusive time scale, such as phase transitions and slowmechan-
ical transformations. And the kinetic equation also prevents PFC
simulations from direct comparison with faster, real-world
mechanical experiments. To handle this shortcoming of PFC, a mod-
ified PFC (MPFC) dynamic equation is introduced by Stefanovic et al.
[18], which is given by
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¼ a2r2½ruþu3 þ ð1þr2Þ2u�; ð3Þ

where a and b are phenomenological constants related to the effec-
tive sound speed and vacancy diffusion coefficient respectively. Eq.
(2) is of the form of a damped wave equation, containing two prop-
agating density modes at the early stage and one diffusive mode at
late times. By choosing effective values of a and b, a finite elastic
interaction length and stage can be set. Over this elastic interaction
time and distance, density waves will propagate effectively
undamped. Beyond this time and distance, however, density evolu-
tion becomes diffusive. For more information one can refer to Ref.
[18]

The thermodynamic phase diagram of this model has been dis-
cussed previously [9,12,24], which shows that the free energy
functional of Eq. (2) can yield different crystal phases such as
body-centered-crystal lattices, hexagonal lattices and the lamellar
phase. In this study, we restrict our attention to hexagonal lattices
in two dimensions. The hexagonal lattice density in two dimen-
sions can be approximated by considering the contribution of the
principle reciprocal lattice vectors as:
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where u0 is the average density, q is wave number related to the
crystal lattice constant a0 (q ¼ 2p=a0), and A is the amplitude of
density waves. By substituting Eq. (4) into Eq. (1), taking partial

derivatives with respect to A and q, and making them equal to zero,
we can acquire A and q as follows:
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The physical details of all the parameters and the solving proce-
dure of Eq. (3) spectrally implemented in the Fourier space can be
referenced to Ref. [25]. Here, parameters used in the simulation are

ðr;u0;Dx;Dy;Dt;a;bÞ ¼ ð�0:6;0:3951;p=4;p=4;0:001;20;0:9Þ;
ð6Þ

where r is the dimensionless parameter relating to temperature, Dx
and Dy are the grid-sizes and Dt is the time-step size. The values of
parameters a and b are set in the elasticity response regimes of
MPFC, the detailed relationship between the two parameters have
been illuminated in Ref. [18].

2.2. Strain application and characterization

In trying to understand the length scales effect on the shear
strain response, we need to have a common length scale parame-
ter. For this purpose, we define the characteristic length scale as
the length-to-height (x/y) aspect ratio of the specimen. In this
work, the entire simulation domain is a rectangle scaled by
nDx�mDy, where n and m represent the number of lattice in x
and y direction of the domain, respectively. The rectangle domain
is divided into two parts. A small coexisting liquid boundary of
width 100Dx is included on all four sides of the sample. The major
reason for setting the liquid area is for the MPFC model cannot use
free surfaces as in MD simulations to simulate deformation pro-
cess. However, we can create free surfaces by choosing chemical
potential to vary spatially over narrow strips near the solid-
liquid interfaces of the system, as illustrated in Fig. 1. This is
achieved by choosing values of r and u0 from the coexistence
region of the hexagonal solid and liquid phase diagram [9,12].

Fig. 1. Schematic illustration of simulation atom density field of a nano-single
crystal specimen for the x/y aspect ratio of 1:1, where the coordinate axis is shown
at the upper-left corner. The atoms within the white rectangle box are coupled to
the external field. The light blue zone is liquid phase and black rectangle represents
the statistical area of strain contour. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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