
Bracket formalism applied to phase field models of alloy solidification

P.C. Bollada ⇑, P.K. Jimack, A.M. Mullis
University of Leeds, United Kingdom

a r t i c l e i n f o

Article history:
Received 23 May 2016
Received in revised form 12 September
2016
Accepted 26 September 2016
Available online 24 October 2016

Keywords:
Phase field
Alloy solidification
Non-equilibrium thermodynamics

a b s t r a c t

We present a method for coupling current phase field models of alloy solidification into general contin-
uum modelling. The advantages of this approach are to provide a generic framework for phase field mod-
elling, give a natural and thermodynamically consistent extension to non-isothermal modelling, and to
see phase field models in a wider context.
The bracket approach, introduced by Beris and Edwards, is an extension of the Poisson bracket of

Hamiltonian mechanics to include dissipative phenomena. This paper demonstrates the working of this
formalism for a variety of alloy solidification models including multi phase, multi species with thermal
and density dependency.
We present new models by deriving temperature equations for single and more general phase field

models, and give a density dependent formulation which couples phase field to flow.
� 2016 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The phenomena and process of alloy solidification, well
described in [1], is now routinely associated with the significant
successes of the modelling methods of phase field. Phase field
came into being as a computational convenience (if not necessity)
to capture the evolution of complex surface structures. More
recently it has become possible to compute with physically realis-
tic finite interface regions where the material is neither solid nor
liquid, in which case the phase field becomes a physical field in
the interface region.

Although it is well known that dissipative phenomena with
constant boundary temperature spontaneously change to accom-
modate a lowering of the Gibbs free energy, the details of such
transitions are still obscure for many complex materials. For
dynamic modelling, this complexity is reflected in the construction
of the Gibb’s free energy, which typically includes both physical
and non-physical states of matter – an example of the latter being
the Gibbs free energy of a solid significantly above its melting tem-
perature. Moreover, current computing resources andmethods still
struggle to grapple with the highly non-linear partial differential
equations that the phase field method produces. Yet, in principle,
the modelling of even complex materials using phase field is quite
straightforward in outline: specify the global free energy of the
physical system and allow the system to evolve spatially and tem-
porally in such a way as to optimally minimise this functional in a

thermodynamically consistent way. This manifests itself mathe-
matically by the underlying presence of variational derivatives
and diffusion parameters. To illustrate this, given a single phase

formulation of the free energy, F ¼ RX f ð/;r/; c; TÞd3x, in a domain
X for the thermal-solutal (T; c) solidification of a metal, where
/ 2 ½0;1� indicates bulk melt or bulk solid at the extremes, the
dynamical equations are typically given as, [2] a variational form
for the phase variable

_/ ¼ �M
dF
d/

; ð1Þ

a conserved variational form for the solute concentration variable, c,

_c ¼ r � Dr dF
dc

; ð2Þ

and a temperature diffusion equation

C _T ¼ r � jrT þ L _/: ð3Þ
In the above M is phase mobility, D a solute diffusion parameter, j
thermal conductivity, C, and L are the volumetric heat capacity and
volumetric latent heat parameters respectively - all prescribed. Also
arising in the right hand side of Eq. (2) can be r � j where j is an
anti-trapping current that compensates for non-physical effects in
isothermal simulations associated with the computationally conve-
nient use of a larger than realistic interface width, [3] – the anti-
trapping current is not currently derived from a variational proce-
dure and it is difficult to apply the mathematical analysis to general
materials.There is likely to be a problem with a non -variational
induced anti-trapping when applied to thermal models if the

http://dx.doi.org/10.1016/j.commatsci.2016.09.036
0927-0256/� 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: p.c.bollada@leeds.ac.uk (P.C. Bollada).

Computational Materials Science 126 (2017) 426–437

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2016.09.036&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.commatsci.2016.09.036
http://creativecommons.org/licenses/by/4.0/
mailto:p.c.bollada@leeds.ac.uk
http://dx.doi.org/10.1016/j.commatsci.2016.09.036
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


current is not entropically neutral. Thus generation of an anti-
trapping current from a variational procedure, if possible, which
guarantees zero entropy generation may be advantageous. How-
ever, further discussion of this is beyond the scope of this paper.

The presence of r/ in the free energy indicates a penalty in the
free energy, i.e. an increase of free energy if the interface becomes
too sharp. It is by no means obvious how three such different look-
ing equations come from a single underlying principle. The form of
these equations can be justified either by appeal to a sharp inter-
face model, [4], or by assuming a finite interface and seeking ther-
modynamic consistency, [5].

This paper is concerned with the application of a generic non-
equilibrium thermodynamic method to phase field modelling of
alloy solidification. Multiphase models have been described with-
out coupling to a temperature equation, for example by Nestler
et al. [6] and, although it might be perfectly feasible to start from
this formulation using the methods of, Penrose et al. [5], we are
here applying the generic methods of Beris and Edwards [7].
Generic, in the sense that these methods apply to any continuum
system with or without dissipative behaviour. Significant non-
dissipative examples being: Euler flow and Elasticity; and dissipa-
tive examples being: Navier-Stokes, complex fluid modelling and
visco-plasticity. This method has more in common with [5] than
with [4], keeps the formal structure and the particular physical
system concerned quite distinct, and brings to light differences
and clarification when compared with other models (including sin-
gle phase models) in the literature. The most obvious differences in
the model are shown here to be in the temperature equation,
which may be compared with single phase formulations as
described in, [12–15].

The approach detailed here concerns a generalisation of the
Poisson bracket for continuous non-dissipative phenomena and
will be referred to as the ‘‘bracket” formalism. Application of the
bracket produces a variational formulation, which in turn produces
systems of coupled PDEs. In this sense there is a hierarchy:

Bracket ! Variational form ! PDEs:

Before embarking on a description of the bracket formalism as
applied to phase field dynamics we state some reasons why this
method may be preferable to other approaches, the main con-
tender perhaps being the methods of Linear Irreversible Thermo-
dynamics (LIT) [16]. The bracket formalism can be used to derive
evolution equations for systems involving any number of coupled
phenomena, and to guarantee that the couplings do not violate
any principles of mechanics or laws of thermodynamics by con-
struction. In LIT there is no provision for the inclusion of the kine-
matic of flow (as expressed by the Cauchy momentum equation)
and the stress tensor. LIT provides expressions for the viscous or
dissipative stresses, but cannot help with the conservative or elas-
tic stresses. The bracket structure dictates the stress that appears
in the Cauchy momentum equation, in terms of both conservative
and dissipative contributions. Furthermore, these contributions are
guaranteed to be mechanically and thermodynamically consistent
between all of the coupled evolution equations necessary for the
system description. In the bracket approach, the stress tensor field
is given via a specification of the free energy functional, which is
also something that does not come from LIT. In the phase field
application here, we may wish to include flow modelling in a ther-
modynamically consistent way that will include conservative as
well as dissipative phenomena. Indeed, the simple provision for
an associated density change with phase already begins this cou-
pling because conservation of mass implies the presence of flow.
It is the generality of the bracket that is key here. The bracket for-
malism encompasses all continuous phenomena and provides a
clear distinction between the conservative and dissipative contri-
butions. In Section 7.1 of [7], the authors state their assumption

that the Onsager/Casimir reciprocal relations are valid for systems
close to equilibrium and that this implies that the lowest order
representation of the dissipation bracket, as used here, must be a
symmetric bilinear functional. Taking this as our starting point,
we show, in agreement with [7], that the bracket formalism
appears considerably easier to apply and perhaps less prone to
error than other methods. Finally, even in the simplest phase field
applications as explored in this paper, by applying the bracket in
all generality there appear terms that have previously either been
overlooked or neglected. Possibly the most important example of
the latter is the correct construction of the temperature field
equation.

The structure of the paper is as follows: Section 2 introduces the
bracket and illustrates its application to a simple phase field model
of solidification and then extends to include a thermal field. The
temperature equations differ from the literature and so simulation
results are presented which show the effect of the postulated new
terms. Section 3 extends the bracket to apply to multi phase and
multi species models of alloy solidification. Section 4 discusses
previously neglected terms (postulated by a more general dissipa-
tive bracket) as providing additional enrichment for alloy mod-
elling. Section 5 extends the single phase and multiphase model
to include density. The key feature of this section is the introduc-
tion of the Poisson bracket alongside the dissipative bracket. The
introduction of density implies a flow field so as to maintain mass
conservation, an associated stress tensor, and additional terms to
the pressure and temperature field.

The additional terms due to density modelling are easily
extended to multiphase field formulations.

2. The bracket and phase field solidification

In this section we review the bracket and illustrate the formal-
ism with single phase solidification modelling.

The bracket formalism is an extension of the Poisson bracket
methodology of conservative, discrete particle systems to include
dissipative and continuous systems. As is well known for conserva-
tive particle systems, dynamical equations are given once the
Hamiltonian is prescribed in terms of the position and momentum.
For example, for a single particle of massm in a potential well V the
Hamiltonian energy is given in terms of the momentum, p and
position, x by

Hðp; xÞ ¼ p � p
2m

þ VðxÞ; ð4Þ

and the equations of motion for any variable, Q, by

_Q ¼ fQ ;Hg: ð5Þ
In particular when Q represents the position and momentum of the
particle:

_xi ¼ fxi;Hg;

_pi ¼ fpi;Hg: ð6Þ
Here the Poisson bracket is specified by the antisymmetric operator
(for arbitrary variables A, B)

fA;Bg �
X3
j

@A
@xj

@B
@pj

� @A
@pj

@B
@xj

 !
: ð7Þ

This gives as expected

_xi ¼ pi

m
; ð8Þ

_pi ¼ � @V
@xi

; ð9Þ
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