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a b s t r a c t

The microstructure of anodes in lithium-ion batteries has a strong influence on their electrochemical per-
formance and degradation effects. Thus, optimizing the morphology with respect to functionality is a
main goal in battery research. Doing so experimentally in the laboratory causes high costs with regard
to time and resources. One way to overcome this problem is the usage of parametric 3D microstructure
models, which allow the realization of virtual morphologies on the computer. The functionality of
microstructures generated with such models can be investigated by means of numerical transport sim-
ulations. The results of this procedure, which is called virtual materials testing, can be used to design
anodes with improved morphologies that lead to a better electrochemical performance. Recently, a
particle-based stochastic microstructure model for anodes in lithium-ion energy cells has been proposed.
In the present paper, an extension of this model to describe the morphology of anodes in power cells,
whose structure strongly differs from energy cell anodes, is introduced. The extensions include tech-
niques to model anisotropic morphologies with a low volume fraction of the particle phase and strongly
irregular particle shapes. The model is fitted to 3D image data of a power cell anode and validated using
morphological image characteristics. Furthermore, we show examples of modifications of our
microstructure model that can be made for generating further virtual morphologies. Finally, we briefly
explain how electrochemical characteristics can be estimated using thermodynamically consistent trans-
port theory. To illustrate this, we compute the cell potential over time during lithiation for image data of
real microstructures as well as corresponding microstructures simulated by our model.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Lithium-ion batteries have a wide field of applications, ranging
from small mobile devices up to large-scale applications, e.g., in
electric vehicles. However, there are still unresolved problems con-
cerning capacity, power, safety, duration and aging effects, see, e.g.,
[1–4]. For an overview of challenges regarding lithium-ion batter-
ies we refer to [5].

It is well known that the morphological properties of the elec-
trodes strongly contribute to these problems. Thus, the microstruc-
ture of anodes and cathodes is of high interest in battery research

[6–8]. Many theoretical investigations are based on the famous
model introduced by Newman [9]. However, Newman’s model
does not take into account the full 3D information of the
microstructure. This can be overcome using microstructure-
resolved transport models, see [10]. Given the 3D morphology of
the electrodes, such models can be used to predict the electro-
chemical performance of battery cells. Thus, if a tool is on hand
that systematically generates virtual 3D microstructures with
varying morphological properties, microstructure-resolved trans-
port models can be used to identify electrochemically preferable
structures, a procedure called virtual materials testing. Stochastic
microstructure modeling has proven to be an ideal tool for the gen-
eration of such structures for various energy materials, see, e.g.,
[11,12]. In particular, virtual materials testing based on stochastic
modeling has been performed in [13,14] for a wide class of 3D
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structures, which are closely related with microstructures
observed in tomographic image data for electrodes of solid oxid
fuel cells (SOFC). Thus, it is desirable to develop a parametric
stochastic model that is capable of creating a broad range of bat-
tery electrode morphologies, which can be used as input for
microstructure-resolved transport models. By doing so, an efficient
tool (compared to experimental manufacturing and testing of elec-
trodes in the laboratory) to identify preferable structures is
provided.

Depending on the application of a battery, either power cells or
energy cells are used. While for an energy cell the capacity is of
high priority, which is reflected in a high volume fraction of the
particle phase, for power cells a fast ion transport is necessary
for high charge and discharge currents, and therefore the volume
fraction of the pore phase needs to be rather high. For a discussion
of the morphological differences between energy and power cells
we refer to [15].

Recently, a parametric stochastic model for the microstructure
of anodes in energy cells has been developed [16]. The model is
particle-based, and each particle is modeled using so-called spher-
ical harmonics [17]. The particles are placed in a system of convex
polytopes that forms a decomposition of the region of interest. Due
to the high volume fraction of the particle phase in energy cell
anodes, it is easily possible to force each particle to touch a previ-
ously chosen subset of neighbors, in a way that the whole 3D struc-
ture is completely connected.

In the present paper, a parametric stochastic microstructure
model for power cell anodes is introduced, which is based on the
approach considered in [16]. The model accounts for the lower vol-
ume fraction of the particle phase, but still ensures its complete
connectivity. In addition, techniques for modeling particles with
more irregular shapes (compared to [16]) as well as anisotropy of
the particle phase (which results from the calendering process)
are presented. We fit the model to tomographic 3D image data
(which we will call ‘real data set’ or just ‘real data’ in the following)
of a power cell anode and compare morphological characteristics
between real and simulated data.

In addition, we show various kinds of modifications of the
microstructure that can be realized by the model. Finally, we
briefly discuss how the thermodynamically consistent transport
theory developed in [10] can be applied to image data of real
microstructures and virtual ones generated by the model. To give
an example, we compute the cell potential over time during lithi-
ation of the electrode. Those two aspects (the ability to generate
virtual, but still realistic structures and to perform electrochemical
simulations) provide the basis for virtual materials testing.

The paper is organized as follows. In Section 2, a brief overview
of the considered material and data preprocessing steps is given.

The stochastic microstructure model as well as the fitting proce-
dure to real data are introduced in Section 3. The validation based
on morphological image characteristics is shown in Section 4. An
outlook towards virtual materials testing is given in Section 5. In
Section 6, the results are summarized and possible further work
is discussed.

2. Material description and data preprocessing

The real data, to which the model is applied, is taken from a
plug-in hybrid vehicle’s battery cell. The cells have been exposed
to moderate cyclic aging, i.e., no too strong structural changes
due to aging are expected. The imaging was performed at a syn-
chroton X-ray facility (BAMLine, BESSY, Berlin). For details regard-
ing the imaging process, we refer to [18], where the technique has
been introduced in detail. The imaging procedure resulted in an 8-
bit 3D grayscale image with 1601� 1401� 109 voxels, where the

voxel size is ð0:44 lmÞ3.
This grayscale image is binarized, i.e., each voxel is either

assigned to the particle phase or to the complementary phase,
the pore phase. First, in order to remove noise in the image data,
a Gaussian filter (see, e.g., [19]) with parameter r ¼ 1 is applied.
After that, a (manually chosen) global threshold of 34 is applied,
as this value leads to the best binarization considering visual com-
parison. We expect the particles not to have holes, however, due to
artifacts in the data, after binarization, some holes are visible.
Those holes are detected using the Hoshen-Kopelmann clustering
algorithm [20] and removed, i.e., the corresponding voxels are
assigned to the particle phase. This is done for clusters found up
to a size of 10,000 voxels. Finally, as we expect the particle phase
to be completely connected, a clustering algorithm is performed
(now on the particle phase) and only the largest cluster (and clus-
ters touching the edge of the image, as their connectivity across the
border is not known) are kept, which removes a few artifacts in the
background.

As an example, Fig. 1 shows a cutout of a 2D slice from the
grayscale image and the corresponding binarization. The complete
binarized 3D data set is visualized in Fig. 2.

As the parametric stochastic model is particle-based, we need a
segmentation of the binary image that allows identification of indi-
vidual particles. This is necessary for parameter estimation, see
Section 3.4. The segmentation is done using a watershed algorithm,
see, e.g., [21] for detailed information. The algorithm is adapted
from [22] and is based on so-called regional local minima, which
extend the concept of simple local minima in order to prevent
oversegmentation. We consider the so-called negative Euclidean
distance transformation of the binary image, i.e., the value of each

Fig. 1. 2D planar cutout of the real data set.
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