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a b s t r a c t

Modeling alloys requires the exploration of all possible configurations of atoms. Additionally, modeling
the thermal properties of materials requires knowledge of the possible ways of displacing the atoms.
One solution to finding all symmetrically unique configurations and displacements is to generate the
complete list of possible configurations and remove those that are symmetrically equivalent. This
approach, however, suffers from a combinatorial explosion when the supercell size is large, when there
are more than two atom types, or when there are many displaced atoms. This problem persists even
when there are only a relatively small number of unique arrangements that survive the elimination pro-
cess. Here, we extend an existing algorithm to include the extra configurational degrees of freedom from
the inclusion of displacement directions. The algorithm uses group theory and a tree-like data structure
to eliminate large classes of configurations, avoiding the typical combinatoric explosion. With this
approach we can now enumerate previously inaccessible cases, including atomic displacements.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

In computational material science, one frequently needs to list
the ‘‘derivative superstructures” [1] of a given lattice. A derivative
superstructure is a structure with lattice vectors that are multiples
of a ‘‘parent lattice” and have atomic basis vectors constructed
from the lattice points of the parent lattice. For example, many
phases in metal alloys are merely ‘‘superstructures” of fcc, bcc, or
hcp lattices (L10, L12, B2, D019, etc.). When modeling alloys, it is
necessary to explore all possible configurations and concentrations
of atoms within these superstructures. When determining if a
material is thermodynamically stable, the energies of the unique
arrangements are compared to determine which has the lowest
energy.

Derivative superstructures are found using combinatoric
searches [2–8], comparing every possible combination of atoms
to determine which are unique. However, these searches can be
computationally expensive for systems with high configurational
freedom and are sometimes impractical due to the combinatoric
explosion of possible arrangements.

Other problems impaired by the inefficiency of current enumer-
ation methods include modeling materials that have disorder in

their structures, such as site-disordered solids [9] or that include
atomic displacements as a degree of freedom [10–12]. There are
numerous techniques available for modeling these systems includ-
ing cluster expansion (CE) [13] and a recently developed ‘‘small set
of ordered structures” (SSOS) method [14]. However, the accuracy
of these methods is still linked to the number of unique configura-
tions being modeled. In other words, if the model is trained on a
small set of configurations then it will not be able to make accurate
predictions. Increasing the number of configurations used to train
the models can improve their predictive power. Increasing the
number of structures being used requires a more efficient enumer-
ation technique than those currently available.

Leveraging the basic concepts of the algorithm presented in Ref.
[6], we altered the algorithm to have more favorable scaling in
multinary cases. The basic idea is to imagine the enumeration as
a tree search and employ two new ideas: (1) ‘‘partial colorings”
and (2) stabilizer subgroups. Section 3 illustrates the algorithm
with a concrete example.

The concept of partial colorings is to skip entire branches of the
tree that are symmetrically equivalent to previously visited
branches. A partial coloring is an intermediate level in the tree
(see Fig. 1) where configurations are not yet completely specified.
It frequently happens that symmetric redundancy can be identified
at an early, ‘‘partially colored” stage, avoiding the need to descend
further down the tree.
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Stabilizer subgroups [15] further increase the efficiency of the
new algorithm. The stabilizer subgroup at each stage is the set of
symmetries which leave the current partial coloring unchanged.
As we add more colors, and eliminate symmetrically equivalent
colorings, we need not consider colorings which would be equiva-
lent by non-stabilizer symmetries, since those colorings have
already been implicitly eliminated. Note that the stabilizer sub-
group will get smaller as we proceed down the search tree, thus
simplifying and speeding our search.

2. Supercell selection and the symmetry group

The first step in enumerating derivative superstructures is the
enumeration of unique supercells. This step was solved in Ref.
[8], but due to its importance to the algorithm we provide a brief
overview.

The supercells, of size n, are found by constructing all Hermite
Normal Form (HNF) matrices whose determinant is n. An HNF
matrix is an integer matrix with the following form and relations:

a 0 0
b c 0
d e f

0
B@

1
CA; 0 6 b < c; 0 6 d < f ; e < f ð1Þ

where acf ¼ n. The HNFs determine all possible the supercells for
the system. For example, consider a 9-atom cell, then n ¼ 9 and a,
c; f are limited to permutations of (1,3,3) and (1,1,9). Then follow-
ing the rules for the values of b; d, and e, every HNF for this system
can be constructed. These HNFs represent all the possible supercells
of size n of the selected lattice. Some of these are equivalent by
symmetry, so the symmetry group of the parent lattice is used to
eliminate any duplicates.

Next, we convert the symmetries of the lattice to a list of per-
mutations of atomic sites. There is a one-to-one mapping between
the symmetries of the lattice and atomic site permutations, i.e., the
groups are isomorphic. The mapping from the symmetry opera-
tions to the permutation group is accomplished using the quotient
group G ¼ L=L0, where L is the lattice, constructed from the unit
cell, and L0 is the superlattice, constructed from the supercell. The

quotient group G is found directly from the Smith Normal Form
(SNF) matrices, which can be constructed from the HNFs via a stan-
dard algorithm using integer row and column operations. Thus
S ¼ UHV where U and V are integer matrices with determinant
�1 and S is the diagonal SNF matrix, where each positive integer
diagonal entry divides the next one down. The group, G, is then
G ¼ Zs1 � Zs2 � Zs3 , where si is ith diagonal of the SNF and Zsi repre-
sents the cyclic group of order n.

Once the supercells have been found and their symmetry
groups have been converted to the isomorphic permutation group,
the algorithm can begin finding the unique arrangements of atoms
within each supercell in a tree search framework. This is accom-
plished by treating each supercell with its symmetry group as a
separate enumeration problem. The results of the enumeration
across all supercells are then combined to produce the full
enumeration.

3. Tree search

Once a supercell has been selected, the remainder of the enu-
meration algorithm resembles a tree search. It is often possible
to skip the descendents of a node because we know all its ‘‘leaves”
will represent duplicate structures. These nodes represent incom-
plete configurations, or partial colorings (see Figs. 1 and 2). The par-
tial colorings are identified using a ‘‘location vector” — a list of
indices that specify the node in the tree. Once a partial coloring
is constructed, the stabilizer subgroup for that partial coloring is
found. The stabilizer subgroup allows for the comparison of
branches within the tree in a manner that minimizes the number
of group operations used. These tools (partial colorings and the sta-
bilizer subgroup) are used to ‘‘prune” branches of the tree as they
are being constructed, eliminating large classes of arrangements at
once (Fig. 3).

We will use a 2D example of a 9-atom cell to illustrate the algo-
rithm. The lattice will be populated with the following atomic spe-
cies; 2 red atoms, 3 yellow atoms, and 4 purple atoms. A subset of
the possible arrangements of this system is shown in Fig. 2. The
concepts illustrated with this 2D example are equally applicable
in 3D.
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Fig. 1. The empty lattice and 8 of the 36 configurations with only red atoms are shown for the example discussed in Section 3. Above each partial coloring is a vector that
indicates its location in the tree, i.e. ðxr ; xy; xpÞ, where the xis are integers that indicate which arrangement of that color is on the lattice and a � means that no atoms of that
color have been placed yet. Below each configuration is either the label of a symmetrically equivalent configuration, along with the group operation that makes them
equivalent, or the letters A and B. A and B are the branches that are built from the 1-partial colorings that are unique and are displayed in Fig. 2. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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