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We present an efficient, physics-based constitutive model for bulk polycrystalline ferroelectric ceramics,
which links domain switching mechanisms and phase transitions at the microscale to the observed
electro-thermo-mechanically coupled material response at the macroscale. In particular, a convexified
energy density is formulated based on domain volume fractions and extended to polycrystals via the
common Taylor assumption of uniform strains (alternative descriptions are discussed as well). The cho-
sen kinetic relations admit to account for differences in 90°- and 180°-domain wall motion and rate
effects. The model is applied to tetragonal barium titanate (BaTiO3) and we present results for both mate-
rial point calculations and finite element simulations, which demonstrate good qualitative agreement
with experiments. We deliberately target bulk polycrystalline ferroelectrics in contrast to thin films that
have been studied extensively.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ferroelectric ceramics form the basis of sensors and actuators,
energy harvesters, and vibration dampers, among others. Their
electro-mechanical coupling stems from an atomic-level dipole
crystal structure that facilitates the conversion of mechanical
strains into an electrical charge separation and thus into a voltage,
and vice versa. The piezoelectric effect of ferroelectrics is a key
mechanism that makes active materials responsive to applied
electric fields [1,2]. Piezoelectric materials are ferroelectrics which,
in case of ceramics, possess a tetragonal, rhombohedral or
orthorhombic lattice structure [3-5] which results in a
spontaneous polarization below their Curie temperature |[6].
Technologically relevant piezo-ceramics are, among others, the
synthetic perovskites lead titanate (PbTiO3), lead zirconate titanate
(Pb|Zr,Ti;_x]O3, or PZT), further barium titanate (BaTiOs3) as well as
synthetic ceramics such as bismuth ferrite (BiFe3) or sodium
niobate (NaNbO3). More recently, electroactive polymers such as
polyvinylidene difluoride (PVDF) and its copolymers have become
attractive for their low weight.

Large electric fields can permanently switch the polarization in
ferroelectrics, which is commonly used to pole piezo-devices but
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was also shown to produce large mechanical damping [7-12], sig-
nificant electrostrictive strains [13], and pronounced changes of
the elastic moduli [14]. The switching of ferroelectric domains
occurs under large electric fields that drive the material beyond
the linear piezoelectric regime. The associated change of the spon-
taneous polarization is accommodated by the nucleation of
domains and, most importantly, the motion of domain walls.
Domain wall motion [15,16] and the interaction of domain walls
with lattice defects [17,18] dissipate energy, which is rate-
dependent and thus leads to dielectric losses [19] and hysteresis
during electric cycling [20-23]. The dissipative nature of domain
wall motion manifests itself, e.g., through pronounced damping
in ferromagnetics [24] or in ferroelastic and ferroelectric solids
[6,25]. Pronounced damping was also shown in BaTiO; and PZT
under large stresses (1-100 MPa) which align domains [26] and
thus yield significant damping [27,14] by promoting non-180°
domain wall motion. The combined effects of constant electric bias
and constant or cyclic compression were investigated, e.g., in
Chaplya and Carman [9] and Zhou et al. [28].

The energetics and thus the equilibrium response of
ferroelectrics are understood fairly well and have been modeled
extensively, beginning with the seminal works of Landau [29]
and Devonshire [30,31]. On the single-crystal level,
microscopically-motivated phase field models [32-37] as well as
atomistic [38,39] or relaxation-based approaches [40,41]| have
given insight into the electro-mechanical coupling and the
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(quasistatic) electrical hysteresis [42-46,32-34,47]. The macro-
scopic behavior of polycrystalline ferroelectrics has been investi-
gated by both phenomenological [48-52] and thermodynamics-
based approaches [53-59], see also Kamlah [60], Landis [61] for
reviews. Models and experiments have also highlighted the depen-
dence of the electrical hysteresis on the material’s microstructure,
see, e.g. [62-66]. In contrast to the quasistatic performance, the
temperature-, electric field-, and stress-dependent kinetics of the
rate-dependent domain switching process have left many open
questions. A major focus has been on thin films whose behavior
was studied computationally [32,67-69] and experimentally
[70,67,68] and is affected by the free surfaces. By contrast, for
the macroscopic scale of polycrystalline-polydomain bulk ferro-
electric ceramics, only a few models exist that efficiently and accu-
rately describe the nonlinear electrical hysteresis and the
associated physics of domain switching [71].

Here, we present a variational constitutive model for polycrys-
talline ferroelectric ceramics which describes the electro-
mechanically-coupled performance under externally applied bias
electric fields and stresses under isothermal conditions; the model
can further be extended to capture structural transitions such as
the martensitic transformation at the Curie temperature of per-
ovskites (although this is not the focus here). Our goal is to retain
as much microstructural information as possible (e.g., resolving the
individual domain volume fractions in each grain of the polycrys-
tal) but to formulate a model that is sufficiently efficient to be used
in macroscopic simulations at the structural and device level, as
demonstrated by finite element calculations. While the general
model outlined here is versatile and sufficiently general to be
applied to various materials systems, it is specialized for the
description of tetragonal perovskites and applied to simulate the
response of BaTiOs. In Section 2 we summarize the constitutive
model (starting on the single-domain level and advancing to a
polycrystal-polydomain model). Section 3 describes the specific
assumptions and material parameters for BaTiOs. Section 4 gives
an overview of simulation results, and Section 5 concludes this
contribution.

2. Constitutive model

In the following, we discuss the basic concepts of the constitu-
tive model with increasing complexity, starting with a single ferro-
electric domain, extending the former to single-crystals containing
multiple domains, and finally relaxing the single-crystal model
into an effective polycrystal description; see the schematic in
Fig. 1. Throughout, we focus on ferroelectric ceramics whose typi-
cally small strains allow for the use of linearized kinematics. In
addition, we start by assuming isothermal conditions as well as
loading scenarios sufficiently slow for assuming quasistatic gov-
erning equations (i.e., we capture rate effects but neglect the influ-
ence of inertia and resonance phenomena; the extension to
dynamics is straight-forward because it does not affect the consti-
tutive model but is handled at the finite element level). We note
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that for the electro-mechanical field variables we choose common
continuum-mechanics notation (other communities may prefer
another set of symbols).

2.1. Single-crystal single-domain description of ferroelectrics

Consider a single-crystal consisting of only a single ferroelectric
domain described by the polarization vector p, electric field vector
e = —grad @ (where ¢ denotes the electric potential), and a uni-
form infinitesimal strain tensor & The stored energy density of
the crystal (usually referred to as the electric enthalpy) is assumed
to additively decompose into mechanical and electrical energy
density [32,34], i.e.,

W ep) =y Clep)e —See—ep, (1)
where
&E=¢-¢ (2)

is the elastic contribution to the total strain tensor & and
& =¢'(e,p) is the remanent strain tensor. In general, the elastic
modulus tensor C is anisotropic and depends on both the applied
electric field e and the polarization p, see Liu and Huber [72], so that
the two energetic contributions are strongly coupled. For simplicity
(and because this is approximately the case in the studied materials
systems), we assume an orientation-independent electric permit-
tivity €.
The infinitesimal stress tensor ¢ follows from the electric
enthalpy density by differentiation, viz.
ow .
0=—.=Clep)(e-¢&) 3)
Note that Maxwell stresses are negligible in ferroelectric ceram-
ics at small strains, which is why they are neglected here. Linear
momentum balance in the absence of body forces or inertial effects
requires

dive = 0. (4)

Similarly, the electric displacement vector d and the thermody-
namic driving force y conjugate to the polarization are,
respectively,

ow ow

d:7%=69+p, y:*W7 (5)

and Gauss’ law for quasistatics (assuming no free charges are pre-
sent) implies that

divd = 0. (6)

The above constitutive framework must be completed by a
kinetic relation for the evolution of the polarization p, which is
generally a dissipative process. Examples of phenomenological
kinetic laws can be found in Miehe and Rosato [59] or Idiart [73].

(¢) polycrystal consisting of
multiple poly-domain grains

RER_p,

Fig. 1. Constitutive model construction from single-domain single-crystals to multi-domain polycrystals of tetragonal perovskites.
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