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a b s t r a c t

It is an open question how the particle microstructure of a lithium-ion electrode influences a potential
thermal runaway. In order to investigate this, information on the structural changes, in particular cracked
particles, caused by the failure are desirable. For a reliable analysis of these changes a reasonably large
amount of data is necessary, which necessitates automatic extraction of particle cracks from tomographic
3D image data. In this paper, a classification model is proposed which is able to decide whether a pair of
particles is the result of breakage, of the image segmentation, or neither. The classifier is developed using
simulated data based on a 3D stochastic particle model. Its validity is tested by applying the methodology
to hand-labelled data from a real electrode. For this dataset, an overall accuracy of 73% is achieved.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Lithium-ion batteries combine several beneficial attributes,
such as high energy density and low self-discharge. However,
one of the biggest drawbacks is their vulnerability to thermal run-
away [1]. This is when the temperature of the cell exceeds a certain
threshold, e.g. through overcharging, and exothermic decomposi-
tion of the electrodes generates additional heat accelerating the
process. Such catastrophic failures are rare, but devastating.

During the thermal runaway particles in the electrode material
break, which then affects the reaction [2]. More precisely, it has
been shown that smaller particle sizes (and thus higher specific
surface area) lead to more intense heat generation with lower
onset temperature (see e.g. [3,4]). However, information on the
broken particles is required for a more detailed analysis of which
particles are more likely to crack and thus worsen the safety of
the cell. The main goal in this paper is to detect these particles
and hence to pave the way for further research.

Finding cracked particles, i.e., particles that broke into two
parts, has always been challenging. Typically this is done by visual
inspection. This method however has several disadvantages. It is
time-consuming and processing a large number of particles is
infeasible. Moreover, it is tedious even for smaller particle systems
and often leads to errors. Other approaches are based on advanced

segmentation algorithms [5]. However, such segmentation algo-
rithms often have to be specifically tailored in order to take into
account the given features of the considered image data. In the pre-
sent paper, an algorithm based on machine learning is proposed,
where the complex, non-linear nature of our problem makes
supervised machine learning [6,7] an appropriate tool, since the
associated techniques possess the ability to make predictions
based on previously learned sample data. The classifier, which con-
siders pairs of particles of the post-mortem cell, decides whether
they are the result of breakages. In case a particle broke into mul-
tiple pieces, every pair of (neighbouring) fragments is detected. To
the best of our knowledge, this is the first work of using machine
learning for crack detection in lithium-ion batteries.

To develop our classification model, we use simulated data. We
generate a particle structure based on a parametric stochastic
model (see [8]) and extract pairs of particles with their class labels,
which describe the relationship to each other, e.g. if they are the
result of breakage. Then, different features and classifiers are inves-
tigated. The resulting predictive classifier is retrained and evalu-
ated on hand-labelled data to verify that it is also applicable to
real-world data. This process is illustrated in Fig. 1. Note that, in
contrast to full hand-labelling, for training of the classifier only a
(relatively) small number of labelled particle pairs is necessary,
and thus the enormous effort of hand-labelling is strongly reduced.

The algorithm distinguishes three classes. We have a class label
for particle pairs which are the result of breakage and one for those
which were already separated in the pristine battery cell. But
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particles which touch each other can also be separated by the
watershed algorithm [9] in the course of the image segmentation
(cf. Section 2.1). Consequently, we differentiate the following three
classes of particle pairs:

� BROKEN: The particle pair belonged to the same particle before it
broke apart during the thermal runaway.

� WATERSHEDSEP: The particle pair corresponds to two touching par-
ticles in the tomographic image which are split by the water-
shed transformation.

� PARTICLESEP: The particle pair consists of unrelated, separate parti-
cles, i.e. a pair which is neither BROKEN nor WATERSHEDSEP.

Furthermore, these three classes describe the relationship of
one particle to another one. It is hence possible that e.g. a particle
which is part of a BROKEN-pair, can also belong to a (different) WATER-

SHEDSEP-pair. In Figs. 2 and 3 several examples of particle pairs are
shown.

The rest of this paper is structured as follows. In Section 2, we
describe tomographic imaging and the acquisition of the validation
dataset. After that, in Section 3, we present our algorithm to simu-
late sample data and the classification model. In Section 4, we fol-
low up with the evaluation results of the classifier on the simulated
and on the validation dataset, and discuss its performance. The
conclusion in Section 5 provides a summary and further research
opportunities.

2. Description of tomographic data

The tomographic dataset used in this work was retrieved from
[2] where a commercial LiCoO2 cell underwent thermal runaway
via high-rate overcharge electrical abuse. The LiCoO2 sample was
extracted post-mortem from an outer layer of the degraded elec-
trode assembly, and exhibits a significantly reduced mean particle
diameter, relative to an equivalent sample in its fresh state. This
reduction in particle size is described in [2] as being due to the

(a) 2D slice of a PARTICLESEP particle pair. (b) 2D slice of a BROKEN particle pair. (c) 2D slice of a BROKEN particle pair.

(d) 2D slice of a WATERSHEDSEP particle pair. WATERSHEDSEP(e) 2D slice of a particle pair. (f) 3D rendering of a BROKEN particle pair. 

Fig. 2. Examples of particle pairs from the hand-labelled dataset with their class labels.

Fig. 1. Overview of the model development.
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