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a b s t r a c t

The influences of porosity on thermal radiation were studied for enhancement of light absorption in por-
ous silicon (pSi) photonic crystal (PhCs). A 2D concept of unit-cell for square and triangular lattice of cir-
cular air holes was formulated and solved using plane wave expansion (PWE) technique and Fourier
expansion method. The spectral energy density (SED) of the thermal radiation at different porosity con-
sideration of silicon PhC was investigated for both mentioned lattices including the effect of these lattice
structures in the creation of photonic band gaps. It revealed useful to increase the number of frequency
band gaps by subjecting the PhC to a square lattice at low porosity. Moreover, a triangular lattice beyond
50% of porosity would be suitable in thermal radiation control where the band gap stabilization applica-
tions are required.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Porous silicon (pSi) is a nanostructured and biodegradable
material that has a wide range of properties which has spurred
its application in photonics and energy technologies as well as
other allied fields [1–11]. On the other hand, thermal radiation
from photonic crystal (PhC) which is also referred as complex elec-
tromagnetic structures has recently attracted the attention of sev-
eral researchers [12–17]. Lin et al. indicated that the thermal
radiation from metallic PhCs may even exceed that of a blackbody
in free space [15]. The effect of thermal oxidation and oxide etch-
ing on silicon PhCs of triangular lattice has been studied. Using
plane wave expansion (PWE), Thitsa & Albin [18], modeled the lat-
ter and proposed advantageous processes for tuning the photonic
band gap and defect frequency. There are numerous proposed
applications relating to pSi based PhCs. This is largely due to their
ability to control light propagation within them [7]. Luo et al. pre-
sented a classical simulation of equilibrium thermal emissivity
from dispersive lossy PhCs [19]. They indicated the potential use-
fulness of PhCs in incandescent lighting and thermal photovoltaic
applications. Furthermore, a basis for manipulating the thermal
emission and absorption of radiation in complex photonic struc-
tures and the design of novel solar cell devices has been presented
by Florescu et al. [20]. These authors revealed that controlling the

thermal emission and absorption of radiation in a PhCs enables the
realization of high-efficiency solar cells. Florescu et al. in another
study, analyzed the origin of thermal radiation enhancement and
suppression inside PhCs as a prerequisite for the understanding
the thermal radiation properties of finite PhCs [21]. Moreover,
Gesemann et al. presented measurements of the thermal emission
properties of 2D and 3D silicon PhCs which depended on substrate
heating (resistively and passively) with an aluminum hotplate [22].
A decrease in the averaged energy of 2D PhCs based on bulk and
pSi materials was revealed by Szabo et al. who applied finite differ-
ential time domain (FDTD) method in calculating wave propaga-
tion [23]. Tong et al. indicated that both dispersion characteristic
analysis and numerical simulation of field patterns can verify the
effective phase indexes of 2D triangular PhCs with dielectric rods
in air background [24]. Indeed, the dielectric properties of pSi are
mainly governed by the porosity. However, there are several mod-
els that relate the porosity of a pSi layer and its refractive index.
One of such is the Vegard’s law which considers pSi as a homoge-
neous mixture of silicon and air [7]. Furthermore, Maxwell-Garnett
or the Bruggeman models can be used to describe the dielectric
constant of a two-component materials system [25,26]. The latter
is used in this work and relates porosity and effective refractive
index through the following expression:
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where porosity (p) is the percentage of air in a layer cross section,
nSi is the refractive index of silicon, and npSi is the effective refractive
index associated with that porosity. Table 1 depicts the refractive
index and dielectric constant versus porosity in Bruggeman model
and Fig. 1 shows an example of scanning electron microscope
images of monolayer of pSi found in [27].

Currently, applications of thermal light sources through PhCs
are being explored, mainly in the field of thermo-photovoltaic
power conversion. However, the demands of high-operating tem-
peratures inevitably leads to Nano and microscopic material degra-
dation, presenting a formidable challenge [28–32].

This work is to investigate at high temperature, the spectral
energy density (SED) characteristics of silicon material based on
square and triangular lattice PhCs in different porosities. This is
aimed at exploring new concepts on porosity effect that could be
integrated in solar cells improvement. It is to also study the effect
of lattice structure on the SED spectrum though pSi PhC in order to
retain the reliable design for optimum absorption in solar cells effi-
ciency. These objectives have been achieved by using a PWE algo-
rithm from wave equation based on Fourier expansion method to
the first kind of Bessel function. This method was implemented
for both dispersion relation and density of states (DOS) where
the SED has been deduced. Based on that highlighted methodology,
the results have been compared with existing published works in
statistical physics.

2. Numerical methods

2.1. PWE processing

In the electromagnetic theory, Maxwell’s equations in free
space described the propagation of electromagnetic waves and
the solutions of these equations can be approximated by conjugat-
ing PWE and Fourier expansion methods [33–37]. Thus, the gov-
erning equation for the electric and magnetic component of the
light wave is given by Eq. (2):
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where r2 designed the Laplace operator;~r is the position; Apol the
vector potential; pol stands for the polarization; l0 is the perme-

ability; eð~rÞ is the permittivity and cð~rÞ2 is the phase velocity. In
the PWE method the phase velocity can be expanded as Fourier

series, using the reciprocal lattice vector ~G ¼ m~b1 þ n~b2 with
m;n 2 Z to ensure invariance of the function to displacement:
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Fig. 2 illustrates the real and the reciprocal space in square and
triangular lattice with the primitive basis vectors for both spaces.
The vector potential in the wave equation can also be written as
a Fourier series:
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Introducing Eqs. (4) and (5) into the Eq. (2) and comparing the
coefficients, the central equation can be represented as:X
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Nomenclature

a lattice constant, m
~a1; ~a2 primitive basis vectors in real space
A area, m2

Apol potential vector
~b1; ~b2 reciprocal basis vectors
c2 phase velocity in vacuum, m=s
c2M phase velocity in dielectric material, m=s
cð~rÞ2 phase velocity, m=s
Fa;b; cm;n coefficients in Fourier series
~G reciprocal lattice vector
�h reduced Planck’s constant, J s
J1 first kind of Bessel function
~k wave vector
kB Boltzmann constant, J=K
n refractive index
n2 dielectric constant
p porosity, %
pol polarization
pSi porous silicon
~r position, m

R hole radius, m
Si silicon
T temperature, K
uðx; TÞ energy spectral density, J s=radm2

r2 Laplace operator

Greek letters
a; b arbitrary coefficients for reciprocal lattice vector
e permittivity, F=m
l0 permeability, H=m
f arbitrary coefficient in the eigenvalue problem
x frequency, rad=s

Abbreviation
BZ Brillouin zone
DOS density of states
SED spectral energy density
PhC photonic crystal
PWE plane wave expansion

Table 1
Refractive index and dielectric constant versus porosity in Bruggeman model [25,26].

Porosity (%) Refractive index (nSi) Dielectric constant (n2
Si)

0 3.47 12.04
10 3.23 10.43
20 2.98 8.88
30 2.72 7.40
40 2.44 5.95
50 2.14 4.58
60 1.84 3.39
70 1.56 2.43
80 1.32 1.74
90 1.12 1.25
100 1 1
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