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a b s t r a c t

With phase-field-crystal, the two-dimensional coupled motion of grain boundary (GB) in triangular lat-
tice crystal is studied. The migration mechanism of symmetric and asymmetric GBs in bicrystals is
explored. Considering microcracks can hardly be avoided in materials, it is necessary to study the influ-
ence of microcracks on coupled GB motion. As shown in our simulation results, the influence of microc-
racks can be classified into three categories: (I) GB passes microcracks and is not impeded, cracks
maintain unchanged; (II) Microcracks hinder GB motion, cracks migrate along GB and shrink; (III) GB
motion is blocked by microcracks, cracks extend along GB and enlarge. The three kinds of results have
great dependence on the misorientation and inclination angles of GB. Moreover, coupled GB motion
can also lead to grain growth. The shear-induced grain growth process is simulated. As cracks can impede
coupled GB motion, the shear-induced grain growth can also be hindered by cracks.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The vast majority of natural and man-made metals and alloys
are polycrystals. The existence of grain boundaries (GBs) is the
main characteristic that distinguishes polycrystals from monocrys-
tals. GBs can have great influence on the physicochemical proper-
ties of materials. Many phenomena, such as corrosion,
strengthening and premelting, are closely related to GBs. One
interesting feature of GB is that it can migrate under applied stress.
Cahn and Taylor [1] have proposed a model to explain coupled GB
motion. Recently, many experimental and simulation results [2–7]
have indicated that GBs can be moved by the coupled effect [8] of
applied shear stress. Usually, we can use the coupled factor b = vs/
vn to characterize the coupled effect, where vs is the velocity of the
shear stress parallel to the GB and vn is the normal GB velocity. The
applied shear stress parallel to the GB plane can generate normal
GB motion, which is responsible for many grain growth behaviors
[9,10].

Although traditional experimental methods, like transmission
electron microscope (TEM), can be used to observe microstructural
evolution in materials, they are not convenient and effective for
directly observing GB motion. In recent years, Elder et al. [11–13]
put forward the phase-field-crystal (PFC) method, which is derived

from dynamical density functional theory and thermodynamic
concepts. As the PFC method operates on atomic length and diffu-
sive time scales, it develops into an efficient alternative to molec-
ular simulation methods, e.g. molecular dynamics (MD), traditional
phase-field method, etc. Many microscopic research results
[14–17] have been published by using the original PFC model
[11–13]. Inspired by these new exciting findings which cannot be
effectively achieved by experimental or other simulation methods,
the PFC method has been widely utilized and greatly improved.
Many modified PFC methods [18–20] have been proposed, promot-
ing the continuous development of PFC method. Some previous
works conducted by the PFC simulation have already reproduced
the coupled effect for symmetric tilt boundaries in two-
dimension (2-D) [21] and 3-D [22]. Specifically, Trautt et al. [23]
have investigated the influence of misorientation and inclination
angles on the coupled factor of symmetric tilt GBs between 2-D
square lattices, using the two-mode PFC model [24].

In the processing and manufacturing processes, microcracks can
be inevitably generated on the surface or in the interior of materi-
als. And more microcracks can be initiated during using and
depositing. Under external influential factors, these microcracks
can expand and lead to fracture failure. However, almost all mate-
rials are working with microcracks, provided that the microcracks
can maintain stability under certain working conditions. Therefore,
it is necessary to study the influence of stable microcracks on
material properties. The interaction between microcracks and cou-
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pled GB motion is an interesting topic, which has been seldom
touched by PFC method. Furthermore, as coupled GB motion can
lead to grain growth, the influence of microcracks on the stress-
assisted grain growth is also worth studying.

The goals of this work are to explore the coupled GB motion and
the influence of microcracks in triangular lattice crystals in 2-D
space. The rest of this paper is organized as follows. In Section 2,
the PFC equations, system geometry, applied shear stress, and
dynamics equation are outlined. In Section 3, the mechanisms of
coupled GB motion are studied from microstructural perspective.
In Section 4, the influence of microcracks on coupled GB motion
in systems with different misorientation and inclination angles is
studied. Lastly, the shear-induced grain growth, related to coupled
GB motion, and the influence of microcracks are investigated in
Section 5.

2. PFC simulation methods

In this work, we select the one-mode PFC model [11], which is
much more convenient and efficient to be modeled and analyzed,
to simulate 2-D GBs between triangular lattices. The free energy
of the PFC model has been derived from the perturbative density
functional theory proposed by Ramakrishnan and Yussouff [25]
in the late 1970s. The dynamics of the number density field q is
assumed to be dissipative and driven to minimize the free energy
functional F, which is given by [11]:
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x(r, t), the crystal density field, is defined as x(r, t) = (q(r, t) � q0)/
q0, where q0 is the reference value of liquid phase. r2 stands for
Laplace operator and f is the super-cooling degree related to tem-
perature. The quantities involved in Eq. (1) are all dimensionless.
Vext, specified below, represents an external potential applied to
shear the simulated system.

As triangular lattice is simulated, the approximation for x can
be written as [11]
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where qt is wave number. By means of free energy minimization, At

and qt can be acquired as shown below [11]
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To determine the values of x, we need to compute the phase
diagram. By taking a derivative of the free energy with respect to
the density fields of the triangular and liquid phases, and then
using the common tangent rule, the 2-D phase diagram [15,26]
can be derived as shown in Fig. 1.

The schematic arrangement of the constructed simulation sys-
tem is given in Fig. 2. To create a stable GB, we construct two sep-
arate crystals and join them along a plane normal to the y-
direction. Periodic boundary condition is imposed in the x-
direction, and apparently fails in the y-direction. The orientation
angle of grain, h1 and h2, is defined as the angle rotated clockwise
relative to the y-direction. The misorientation angle h is defined
as the angle between the ½�12 �1�1 axis in grain 1 and the ½�12 �1�2 axis
in grain 2. Then we can get h = h1 � h2, with h > 0 corresponding to
the ½�12 �1�1 axis rotated clockwise relative to the ½�12 �1�2 axis. The
inclination angle u is defined as the angle between the y-
direction and the internal bisector between the ½1 �21�1 and
½�12 �1�2 axes. Therefore, u = (h1 + h2)/2. We take u � 0 if the bisector
is rotated clockwise relative to the y-direction. Similarly, we can
obtain two GBs by adding a third grain. Considering the sixfold
symmetry of triangular lattice, all possible combinations of h and
u can be found in the domain {�p/6 � h < p/6, �p/6 � u < p/6}.

Since the PFC method is not able to model solid-vacuum inter-
faces [17,23,27], we cannot use free surfaces to simulate shearing
deformation process. However, we can simulate free surfaces by
making the atomic densityx vary spatially over narrow strips near
the solid-liquid interfaces, as illustrated in Fig. 2. x varies from xs

to xl along the y-direction, normal to the solid0liquid interface. xs

and xl are the atomic densities of the solid and liquid phases,
respectively.

Applied shear stress is imposed by choosing

Vextðx;yÞ ¼x0
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where e is the constant shear rate. n is time steps the solid-liquid
interface needed to move a grid distance. Δt is the time-step size.
A, adopted as A = At here, stands for the amplitude of shear stress.
Vext is applied on the two solid-liquid interfaces (the gray zones
shown in Fig. 2). Eq. (4) is consistent with Eq. (2) in form, which
can produce coupled effect and simulate shearing effects more
efficiently.

According to the modified PFC equation proposed by Stefanovic
et al. [18], the dimensionless time evolution equation for x can be
expressed as following:

Low 

High 

Te
m

pe
ra

tu
re

 

(a) (b) 

Fig. 1. (a) 2-D phase diagram as calculated by one-mode approximation (the meshed areas correspond to two-phase coexistence regions). (b) Enlarged image of the region
enclosed by dashed box in (a).
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